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A B S T R A C T   

Although obesity is a result of processes operating at multiple levels, most forms result from decision-making 
behavior. The aim of this review was to examine the candidacy of temporal discounting (TD) (i.e. the reduc-
tion in the value of a reinforcer as a function of the delay to its receipt) as a behavioral marker of obesity. For this 
purpose, we assessed whether TD has the ability to: identify risk for obesity development, diagnose obesity, track 
obesity progression, predict treatment prognosis/outcomes, and measure treatment effectiveness. Three data-
bases (Pubmed, PsycINFO, and Web of Science) were searched using a combination of terms related to TD and 
obesity. A total of 153 papers were reviewed. Several areas show strong evidence of TD’s predictive utility as a 
behavioral marker of obesity (e.g., distinguishing obese from non obese). However, other areas have limited and/ 
or mixed evidence (e.g., predicting weight change). Given the positive relationship for TD in the majority of 
domains examined, further consideration for TD as a behavioral marker of obesity is warranted.   

1. Introduction 

The search for and identification of biomarkers have been an area of 
growing scientific emphasis. For example, the search term “biomarkers” 
in PubMed returns over 4000 papers published in 2020. Biomarkers 
have been defined as: “A characteristic that is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic 
processes, or pharmacologic responses to a therapeutic intervention.” 
(Biomarkers Definitions Working Group, 2001, p. 89). In principle, 
biomarkers, if identified, could be useful in a variety of ways. A valid 
biomarker could serve a variety of functions including: the identification 
of those at risk for disease development, disease diagnosis, classification 
of disease progression, predict treatment prognosis/outcomes, and 
measure treatment effectiveness (Biomarkers Definitions Working 
Group, 2001; FDA-NIH Biomarker Working Group, 2016). Some have 
recently suggested that the future identification of biomarkers may 
entail big data and machine learning to screen thousands of molecular 
components (Singh, 2019; Zeng et al., 2016). 

Similar suggestions have been presented in obesity science, focusing 
on inflammation processes (Nimptsch et al., 2019; Shi and Max Good-
son, 2019). The results of these efforts will await new findings. However, 
unlike other diseases, obesity results from a higher level of integrative 

function. Although obesity entails a variety of processes operating at 
multiple levels, most forms result from behavior, be it the decision to 
eat, what to eat, how much to eat, or how much to engage in vigorous 
activity (Epstein et al., 2018; Trivedi et al., 2015). Indeed, most forms of 
obesity would not occur if not for the behavior mentioned above. As 
such, biomarkers may be evident in behavior. Moreover, a viable 
behavioral marker may be able to identify specific phenotypes related to 
obesity (e.g., Carr and Kraft, 2018). 

One potential behavioral candidate is temporal discounting (TD), a 
neurobehavioral process derived from behavioral economics and stud-
ied in neuroeconomics (Bickel et al., 2007; Green and Myerson, 2004; 
Madden and Bickel, 2010). TD refers to the reduction in the value of a 
reinforcer as a function of the delay to its receipt (Green and Myerson, 
2004; Madden and Johnson, 2010). Usual methods entail presenting a 
choice between two monetary alternatives, with one option being a 
smaller, more immediate amount of money, and the other a more sub-
stantial later amount (see Box 1 for more details). A similar construct we 
will review here is delay of gratification, a measure frequently used with 
children. Delay of gratification is assessed by offering children a small 
reward available immediately, often an edible item or toy, or a larger 
reward available after a delay (see Box 1 for more details). Excessive TD 
has been demonstrated in various disorders, and as a result, is 
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considered a trans-disease process (Bickel et al., 2019, 2012b). More-
over, TD has been identified as a candidate behavioral marker in 
addiction (Bickel et al., 2014b; Kwako et al., 2018). In the field of 
obesity science, since the first research report of excessive TD in 2008 
(Weller et al., 2008), a sufficient number have been published to support 
a meta-analysis (Amlung et al., 2016). 

Here we assess the candidacy of TD as a behavioral marker of obesity 
(NIH Health Topics, 2019), defined as having a body mass index (BMI) 
of 30 or greater. Although several reviews of discounting and obesity 
have been conducted, to date none have examined whether discounting 
can function as a behavioral marker in obesity (Amlung et al., 2016; 
Barlow et al., 2016; McClelland et al., 2016; Stojek et al., 2014; Tang 
et al., 2019). Thus, we will review the research on TD in obesity, 
focusing primarily on human studies of monetary discounting, since 
such a version is the most widely used. We will organize this review by 
addressing the potential utility of a marker outlined by the NIH Bio-
markers working group (Biomarkers Definitions Working Group., 2001). 
Specifically, we will examine whether this measure identifies those at 
risk for developing obesity, can diagnose obesity, tracks disease pro-
gression, predicts treatment prognosis/outcomes, and measures 

treatment effectiveness. Not all these areas have been extensively 
investigated, and thus, the assessment of some of these domains may be 
more provisional and will await further study for more definitive esti-
mates. Although TD has been considered a measure of impulsivity, 
reviewing other putative measures of multi-faceted impulsivity 
construct is beyond this review’s scope (c.f. Bickel et al., 2012a; 
Strickland and Johnson, 2020). 

2. Search strategy 

In order to identify the target literature, a search of Pubmed, Web of 
Science and PsycINFO was conducted to capture citations relevant to TD 
and obesity. A combination of the terms related to ‘discounting’ and 
‘obesity’ were searched (i.e., (obesity OR overweight OR “body mass 
index” OR “weight gain”) AND (“intertemporal preferences” OR “time 
preference” OR “delayed gratification” OR “delay* gratification” OR 
“delay of gratification” OR discounting)). The search time window was 
from inception to November 2020. The search resulted in 1094 citations 
related to TD and obesity; 761 after removing duplicates. The titles and 
abstracts of the citations were reviewed according to the inclusion 

Box 1 
Temporal Discounting. 

Temporal discounting is the process by which a reward loses value as a function of the delay to its receipt (Ainslie, 1975; Rachlin and Green, 
1972). Procedures to measure this process entail choosing between a smaller, immediately available reward and a larger reward available after a 
delay. 

Delay of gratification tasks have been used to study self-control in children and adolescents (Mischel et al., 1989). In this paradigm, children 
are placed in an environment where a preferred reward (foodstuff, toy) is available after a delay or a less preferred reward is available 
immediately. 

Temporal discounting is often assessed via monetary incentive tasks, where individuals choose between a smaller amount of money, available 
immediately, or a larger amount available after a delay. These tasks can involve making repeated choices over many trials or a just a few trials (e. 
g., two trial task). The former requires more time but allows for a more granular assessment of valuation while the latter is quicker but gives a 
coarser estimate of valuation. Neuroimaging investigations have utilized brief tasks to investigate neural correlates of intertemporal choice 
between “easy” and “hard” choices (based upon a participant’s preference for immediate or delayed rewards). 

A commonly used method is the adjusting-amount task (Du et al., 2002). In this task, individuals repeatedly choose between a smaller amount 
of money, available immediately, and a larger amount available after a delay (e.g., $50 now or $100 in one week). During this procedure the 
larger amount remains constant while the smaller amount titrates up or down, based upon the prior choice, until the individual is indifferent 
between the two. At this indifference point the subjective value of the two rewards is approximately equal. This procedure is repeated across 
multiple delays (e.g., 1 day, 1 week, 1 month, 3 months, 1 year, 5 years, 25 years) to obtain additional indifference points which are then plotted 
to obtain a discounting curve (i.e., discounted reward value as a function of delay to receipt). 

The calculation of indifference points allows fitting to a non-linear regression model. A plethora of methods to account for discounting have been 
proposed (for review see (Franck et al., 2019)) Mazur’s hyperbolic model (Mazur, 1987) 

SV =
A

1 + kD
(1) 

is often used in both the obesity (Amlung et al., 2016) and addiction literature (MacKillop et al., 2011). In Eq. 1, SV is the subjective value of 
the reward, A is the nominal, full magnitude value of the reward, D is the delay to reward receipt, and k is a free parameter which indexes the 
discounting rate. Higher values of k indicate a more rapid decline in the value of the delayed reward (Odum, 2011b). 

Two Criteria have been developed to identify non-systematic responses in discounting tasks in an effort to improve the quality of data 
collected: 1) starting with the second delay, if any indifference point is greater than the preceding indifference point by a magnitude greater than 
20 % of the delayed reward, and 2) if the final indifference point is not less than the first indifference point by at least a magnitude equal to 10 % 
of the delayed reward. Violation of criterion 1 suggests that further delay causes reward value to increase rather than decrease, while violation of 
criterion 2 suggests that delay has no effect on reward value (Johnson and Bickel, 2008). Violations of either criterion call into question the 
validity of the data and merit consideration for exclusion from analyses. 

An additional method to interpret temporal discounting data is using area under the curve (AUC). This method entails calculating the area 
under the discounting curve to yield a value from 0 to 1, with higher AUC indicating greater value of future monetary rewards. 

Several tasks have been developed to provide a quicker method of k value estimation. The monetary choice questionnaire (MCQ; Kirby et al., 
1999) is an adjusting amount task that assesses an individual’s pattern of choices across 27 questions to assign one of ten discrete k values. In an 
adjusting delay task, individuals are presented with a choice between an immediately available smaller reward and a larger reward available 
after a delay (e.g., $500 now or $1000 in 3 weeks). Across five trials the monetary choices remain constant while the delay changes, allowing for 
estimation of k in less than one minute (Koffarnus and Bickel, 2014).  
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criteria listed below:  

i Used a measure of ‘temporal discounting’ (i.e., monetary delay 
discounting in adults or ‘delay of gratification’ in child samples).  

ii Reported a measure of ‘obesity’ (e.g., overweight/obese sample 
defined by body mass index or body fat percentage) or a measure 
associated with ‘obesity’ (e.g., body mass index, body fat per-
centage, weight change, energy intake, physical activity).  

iii Tested for an association between ‘temporal discounting’ and 
measures of or associated with ‘obesity’.  

iv Human study.  
v Peer-reviewed.  

vi English language.  
vii Full-text available. 

Of those, 553 citations were excluded after reviewing the abstract 
and 59 citations were removed after review of the full text for not 
meeting the parameters for this review. Finally, we checked the refer-
ence lists of studies identified during this search, as well as already 
existing reviews, in order to identify additional studies. Four other 
studies were included. The final sample consisted of 153 studies (see 
Table 1 for a summary of the studies). 

3. Risk for disease development 

One measure of a biomarker’s utility is its ability to identify those at 
risk for disease development. Here, we explore the use of TD as a 
biomarker to identify those at risk for the development of obesity. First, 
we consider longitudinal studies that examine the ability of TD assessed 
early in life to predict later weight gain and onset of obesity. Second, we 
consider the relationship of TD to maladaptive health behaviors that 
promote obesity, such as the increased consumption of highly palatable 
foods, decreased engagement in physical activities, and lack of sleep. 

3.1. Prediction of obesity onset 

The relationship between TD and obesity onset can be assessed using 
longitudinal studies measuring TD rate and BMI at a time point prior to 
the onset of obesity (i.e., during childhood or adolescent years) and 
following up at a later date to ascertain which individuals eventually 
became obese. To our knowledge, no studies to date have assessed TD’s 
ability to predict obesity onset. However, seven studies assessed the 
association between delay of gratification (a similar construct to TD; see 
Box 1) and obesity onset/high weight gain among toddlers and young 
children. Those studies indicated that children’s performance on delay 
of gratification tasks is associated longitudinally with obesity onset and/ 
or their weight (Connell and Francis, 2014; Duckworth et al., 2013; 
Evans et al., 2012; Francis and Susman, 2009; Graziano et al., 2010; 
Schlam et al., 2013; Seeyave et al., 2009). First, a study by Seeyave et al. 
(2009) indicated that children with poorer performance on a delay of 
gratification task at age 4 were more likely to be overweight at age 11. 
The association between task performance and BMI at age 11, however, 
was partially explained by maternal weight status (maternal weight 
status reduced the association significantly). Second, Francis and Sus-
man (2009) indicated that those who scored high on delay of gratifi-
cation tasks at ages 3 and 5 had lower BMIs and fewer increases in BMI 
through age 12 compared to those who scored low on the same tasks. 
Third, as reported by Graziano et al. (2010), ability to delay gratification 
at age 2 predicted pediatric obesity at age 5 even after controlling for 
BMI at baseline. Fourth, Schlam et al. (2013) reported that those who 
delayed gratification longer at age 4 had a significantly lower BMI 30 
years later. Fifth, Duckworth et al. (2013) indicated that children who 
delayed gratification longer at age 4 had healthier BMI scores at age 14. 
Sixth, a study by Evans et al. (2012) reported that delay of gratification 
mediates the association between cumulative risk (calculated across 
children’s exposure to nine sociodemographic, physical, and 

psychological risk factors at age 9) and gains in BMI four years later (i.e., 
at age 13). And finally, Connell and Francis (2014) reported a significant 
interaction effect of parenting style and ability to delay gratification on 
BMI growth trajectories for boys from ages 4–15 years independent of 
pubertal status, mother’s education, and family income-to-needs ratio. 
The effect of delay of gratification on BMI growth indicates that, over 
time, boys who can delay gratification have less BMI growth compared 
to those who fail to delay gratification. For girls, however, the only 
significant predictor of differences in the rate of growth in BMI from 4 to 
15 years was time. 

Together, these initial findings demonstrate that obesity could be 
prospectively predicted by inherent or preexisting differences in choices 
between immediate and delayed rewards. Delay of gratification, a 
construct similar to TD, appears to be a reliable predictor of obesity 
onset in children, however, since TD cannot be measured in young 
children it has not been specifically used as a predictor among this 
population. Further research among older children or young adults is 
required to ascertain TD’s predictive utility. If TD reliably predicts 
obesity onset, it could help identify and target individuals at greater risk 
of developing obesity and would support the classification of TD as a 
candidate behavioral marker of obesity. Further longitudinal research 
among older children or young adults using TD specifically is needed to 
confirm these research findings on this prospective relationship in the 
obese population. 

3.2. Relationship to energy consumed and expended 

Obesity results from a combination of maladaptive health behaviors 
including overconsumption of calories and under engagement in phys-
ical activity (Basile et al., 2019; Brytek-Matera et al., 2018; Kofman 
et al., 2010; Pietiläinen et al., 2008; Wiklund, 2016). Here we examine 
TD as a biomarker for eating and exercise behaviors that promote 
obesity. 

3.2.1. Energy consumption 
A primary driver of overweight and obese outcomes is the con-

sumption of calories beyond what is needed for an individual’s Total 
Daily Energy Expenditure (TDEE), or the necessary energy needed to 
maintain body functioning (Drenowatz et al., 2015; Raymond et al., 
2012). Over the past several decades, the development of highly pro-
cessed foods has made calorically dense foods cheap and easily acces-
sible. This change in the food industry has corresponded with an 
increase in the estimated total daily energy intake at an individual level 
as well as a more overweight and obese society (Swinburn et al., 2009). 
Here we examine the literature discussing the relationship between 
energy intake and TD. 

Recent cross-sectional investigations have characterized the associ-
ation between TD and food consumption or food purchasing behaviors. 
First, studies have shown that steep TD is related to lack of food label use 
while shopping, decreased consideration of food quality, and lack of 
available healthy foods in the home, which are all associated with un-
healthy food consumption (Garza et al., 2019). Second, steep TD is 
associated with heightened consumption of fast food, high sugar foods, 
and otherwise unhealthy diets as well as increased levels of night eating, 
which are all associated with increased BMI (Barlow et al., 2016; Cale-
za-Jimenez et al., 2017; Garza et al., 2016; Malesza, 2020; Shuval et al., 
2016). Steep TD also predicts non-adherence to a Mediterran Diet, a 
nutritionally balanced diet composed of fruits, vegetables, and fish 
(Howatt et al., 2019; Muñoz Torrecillas et al., 2018) as well as lower 
overall healthy eating (as assessed by analysis of food receipts) 
(Appelhans et al., 2019). Our lab has additionally shown that steep TD is 
associated with lower diet quality (as measured by 24 -h food recalls) 
and higher blood glucose levels (HbA1c) in a group of prediabetic adults 
who were also prescribed hypertension or dyslipidemia drugs (Epstein 
et al., 2020). 

Another area of research has focused on the relationship between TD 
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Table 1 
Studies reviewed by functions of a biomarker.  

Biomarker Criteria Reference Study Sample Study Design Study 
Location 

Effect Discounting 
task used 

Magnitude Sample Size 

Risk for disease development 

Prediction of 
obesity onset 

Connell and 
Francis, 2014 

Children (4 years 
old) 

Observational 
(Longitudinal) 

National 
Survey Yes 

Delay of 
gratification 

Animal crackers, 
pretzels OR M&M 778 

Duckworth et al., 
2013 

Children (4 years 
old) 

Observational 
(Longitudinal) 

Laboratory Yes 
Delay of 
gratification 

Several snacks (e. 
g., chocolate 
candies, cookies, 
pretzels) 

966 

Evans et al., 2012 Children (9 years 
old) 

Observational 
(Longitudinal) 

Home Yes Delay of 
gratification 

Candy 244 

Francis and 
Susman, 2009 

Children (3 and 5 
years old) 

Observational 
(Longitudinal) 

Home and 
laboratory Yes 

Delay of 
gratification 

A toy or snacks 
(animal crackers, 
pretzels OR 
M&M) 

1061 

Graziano et al., 
2010 

Children (2 years 
old) 

Observational 
(Longitudinal) 

Laboratory Yes Delay of 
gratification 

A gift 57 

Schlam et al., 2013 
Children (4 years 
old) 

Observational 
(Longitudinal) 

School and 
home Yes 

Delay of 
gratification 

Snacks (e.g., 
cookies, 
marshmallows, or 
pretzels) 

164 

Seeyave et al., 2009 Children (4 years 
old) 

Observational 
(Longitudinal) 

National 
Survey 

Yes Delay of 
gratification 

Candy, animal 
crackers, or 
pretzels 

805 

Relationship to 
energy 
consumed and 
expended 

Energy 
consumed 

Appelhans et al., 
2011 a 

Adult women 
(18− 45) 

Experimental 
(Acute) 

Laboratory Yes Adjusting 
amount 

$100 62 

Appelhans et al., 
2012 a 

Adult women 
(18− 45) 

Observational 
(Longitudinal) 

Natural 
environment Yes 

Adjusting 
amount $100 78 

Appelhans et al., 
2019 Adults 

Observational 
(Longitudinal) Home Yes 

Adjusting 
amount $100 202 

Bennett and 
Blissett, 2017 a Children (2− 4) 

Experimental 
(Acute) 

Laboratory No 
Delay of 
gratification 

Chocolate 
buttons 

95 

Bennett and 
Blissett, 2019 

Children (7− 11) Experimental 
(Acute) 

Laboratory Yes Delay of 
gratification 

Tokens for prizes 50 

Caleza-Jimenez 
et al., 2017 Children (4− 6) 

Observational 
(Acute) Laboratory Yes 

Delay of 
gratification Candy 202 

Courtemanche 
et al., 2015 

Adolescents and 
adults (14− 22, 
assessed again at 
41− 50) 

Observational 
(Longitudinal) 

Laboratory Yes 
Two questions 
to calculate 
discount factor 

$1000 12,686 

DeVoe et al., 2013 Adults (45− 49) Observational 
(Acute) 

National 
survey 

Yes 

One question 
regarding 
claiming of a 
prize 

$1000 6111 

Ely et al., 2015 
Adult women 
(18− 30) 

Experimental 
(Acute) Laboratory Yes 

Adjusting 
amount $100 78 

Epstein et al., 2020 
a Adults Obervational 

(Longitudinal) 
Laboratory 
and home 

Yes Adjusting 
amount 

$100; $1000 81 

Epstein et al., 
2014b 

Adults Observational 
(Acute) 

Online Yes Adjusting 
amount 

$1000 975 

Fields et al., 2017 Adults (university 
students) 

Observational 
(Acute) 

Laboratory Yes 
Monetary 
Choice 
Questionnaire  

101 

Garza et al., 2016 a Adults (19+) 
Observational 
(Acute) 

Online Yes 
Adjusting 
amount 

$1000 478 

Garza et al., 2019 Adults Observational 
(Acute) 

Online Yes Adjusting 
amount 

$1000 477 

Gearhardt et al., 
2017 a Children (7− 10) 

Observational 
(Acute) Laboratory No 

Delay of 
gratification Candy 230 

Groppe and Elsner, 
2014 Children (6− 11) 

Observational 
(Acute) 

School or 
home Yes 

Delay of 
gratification Candy or toys 1657 

Howatt et al., 2019 Adults 
Observational 
(Acute) Online Yes 

Monetary 
Choice 
Questionnaire  

196 

Hughes et al., 2015 Children 
(preschool age) 

Experimental 
(Acute) 

Laboratory Yes (neg. 
cor.) 

Delay of 
gratification 

Candy or snacks 187 

Kekic et al., 2020 a Adults (18+) 
Observational 
(Acute) Online Yes 

Adjusting 
amount 

100 pounds; 50 
pounds 432 

Kelly et al., 2020 
Children and 
adolescents (8− 17) 

Experimental 
(Acute) 

Laboratory No 
Adjusting 
amount 

$10 205 

Knolle-Veentjer 
et al., 2008 

Adults Observational 
(Acute) 

Laboratory No Delay of 
gratification 

Candy or snacks 52 

Leitch et al., 2013 Adult women 
Experimental 
(Acute) Laboratory No 

Adjusting 
amount 10 pounds 80 

Lumley et al., 2016 Laboratory Yes Not mentioned 56 

(continued on next page) 
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Table 1 (continued ) 

Biomarker Criteria Reference Study Sample Study Design Study 
Location 

Effect Discounting 
task used 

Magnitude Sample Size 

Adults (university 
students) 

Observational 
(Acute) 

Monetary 
Choice 
Questionnaire 

Malesza, 2020 a Adults (20− 37) Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

300 euros 305 

Massicotte et al., 
2019 

Adults (20− 40) Experimental 
(Acute) 

Laboratory No Monetary 
Choice 
Questionnaire  

48 

Mellis et al., 2018a, 
2018b 

Obese adults Experimental 
(Acute) 

Online Yes Adjusting 
amount 

$100 120 

Muñoz Torrecillas 
et al., 2018 

Adults (university 
students) 

Observational 
(Acute) 

Classroom Yes Monetary 
Choice 
Questionnaire  

196 

Peng-Li et al., 2020 Adults (university 
students) 

Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

196 

Pieper and Laugero, 
2013 

Children (3− 6) Experimental 
(Acute) 

Laboratory No Delay of 
gratification 

Candy, pennies, 
or prizes 

37 

Rollins et al., 2010 Adult women Experimental 
(Acute) 

Laboratory Yes Adjusting 
amount 

$10 24 

Shuval et al., 2016 Adults (> = 21) Observational 
(Acute) 

National 
survey 

Yes Two questions 
to calculate 
discount factor 

$12; $15; $18 5871 

Temple et al., 2020 Adolescents 
(12− 14) 

Observational 
(Longitudinal) 

Laboratory No Adjusting 
amount (using 
cards) 

$50 207 

Yan et al., 2018 Adults (18− 24) Observational 
(Acute) 

Classroom No Monetary 
Choice 
Questionnaire 

10,000 yen 1013 

Zimmerman et al., 
2017 

Adults (university 
students) 

Experimental 
(Acute) 

Laboratory Yes Adjusting 
amount 

100 pounds 70 

Energy expended 

Chan, 2017 Adults 
Observational 
(Longitudinal) 

Laboratory 
and home Yes 

Adjusting 
amount $50 78 

Epstein et al., 2020 
a Adults 

Observational 
(Longitudinal) 

Laboratory 
and home 

Yes 
Adjusting 
amount 

$100; $1000 81 

Guerrero et al., 
2019 Children (8− 11) 

Observational 
(Acute) 

ABCD study 
repository Yes 

Hypothetical 
monetary 
choice task 

$10 4524 

LeComte et al., 
2020 

Adults (university 
students) 

Observational 
(Acute) Laboratory Yes 

Adjusting 
amount $500 45 

Leonard et al., 2013 Adults Observational 
(Acute) 

Laboratory Yes 
Hypothetical 
monetary 
choice task 

$150 169 

Phillips et al., 2019 Adults (18− 60) 
Experimental 
(Longitudinal) 

Laboratory 
and living 
environment 

Yes 
Monetary 
Choice 
Questionnaire  

85 

Sofis et al., 2017 a Adult women Experimental 
(Longitudinal) 

Outpatient Yes 
Monetary 
Choice 
Questionnaire  

12 

Disease diagnosis 

Distinguishing 
obese from non- 
obese: case/ 
control 

Bickel et al., 2014a, 
2014b Adults (18+) 

Observational 
(Acute) Online Yes 

Monetary 
Choice 
Questionnaire  

1163 

Bickel et al., 2018 Adults (18+) 
Observational 
(Acute) Online No 

Adjusting 
Amount $100 and $1000 1200 

Bonato and Boland, 
1983 Children (8− 11) 

Observational 
(Acute) Laboratory Yes 

Delay of 
gratification candy 40 

Bongers et al., 2015 Adults (18− 45) Observational 
(Acute) 

Laboratory No Adjusting 
amount 

1000 euros 319 

Buono et al., 2015 Adults (18− 27 & 
45− 55) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$1000 38 

Call et al., 2017 Adolescents 
(13− 18) 

Observational 
(Acute) 

Laboratory No 
Monetary 
Choice 
Questionnaire  

133 

Dassen et al., 2018 a Adults (18+) 
Experimental 
(Longitudinal) Laboratory No 

Monetary 
Choice 
Questionnaire  

153 (baseline) 

Davis et al., 2010 a Adult women 
(25− 45) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$100 209 

DeHart et al., 2020 Adults (18+) 
Observational 
(Acute) Online Yes 

Adjusting 
amount $100 700 

Eisenstein et al., 
2015 a Adults 

Observational 
(Acute) 

Laboratory No 
Adjusting 
amount 

$500 45 

Feda et al., 2015 Adolescents 
(13− 17) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$10 and $100 46 
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Table 1 (continued ) 

Biomarker Criteria Reference Study Sample Study Design Study 
Location 

Effect Discounting 
task used 

Magnitude Sample Size 

Fields et al., 2011 a Adolescents 
(13− 19) 

Observational 
(Acute) Laboratory Yes 

Adjusting 
amount $10 36 

Fields et al., 2013 Adolescents 
(14− 16) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$10 61 

Garza et al., 2016 a Adults (19+) Observational 
(Acute) 

Online Yes Adjusting 
amount 

$1000 478 

Gearhardt et al., 
2017 a 

Children (7− 10) Observational 
(Acute) 

Laboratory No Delay of 
gratification 

Candy 230 

Geller et al., 1981 Children Observational 
(Acute) 

Laboratory No Delay of 
gratification 

Food and toys 48 

Graham Thomas 
et al., 2015 

Adults Observational 
(Acute) 

Online Yes Adjusting 
amount 

$1000 450 

Hendrickson and 
Rasmussen, 2017 

Adults Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

348 

Hendrickson and 
Rasmussen, 2013 

Adults 
(undergraduates) 

Observational 
(Acute) 

Laboratory No Adjusting 
amount 

$10 304 

Jarmolowicz et al., 
2014 

Adults (18− 55) Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

100 

Kulendran et al., 
2014 

Adolescents 
(10− 17) 

Observational 
(Longitudinal) 

Laboratory Yes Adjusting 
amount 

$20-$50 103 

Kulendran et al., 
2016 

Adolescents and 
adults 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$50 182 

Lawyer et al., 2015 Adults (18− 30) Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$1000 296 

Manwaring et al., 
2011 a 

Adult females 
(18− 65) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$100 90 

Mole et al., 2015 a Adults (18+) Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

120 

Morys et al., 2018 Adults (18− 35) Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

Not mentioned 56 

Myers et al., 2020 Adults (18− 49) Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

56 

Nederkoorn et al., 
2006 

Adult females 
(18− 49) 

Observational 
(Acute) 

Laboratory No Adjusting 
amount 

$1000 59 

Price et al., 2016 Adults (18+) Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$100 79 

Schiff et al., 2016 Adults (18− 50) Observational 
(Acute) 

Laboratory No Adjusting 
amount 

$40 46 

Simmank et al., 
2015 

Adults (18− 35) Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

Not mentioned 52 

Soofi et al., 2019 Adults (35− 65) Observational 
(Acute) 

National 
survey 

Yes Five questions 
to calculate 
discount factor  

792 

Steward et al., 2017 Adult women 
(18+) 

Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

160 

Stoklosa et al., 2018 Adults Observational 
(Acute) 

National 
survey 

Yes Two questions 
to calculate 
discount factor  

5871 

Syan et al., 2019 Adults (22− 35) Observational 
(Acute) 

Laboratory Yes Not mentioned not mentioned 712 

Verdejo-García 
et al., 2010 

Adolescents 
(13− 16) 

Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

61 

Wainwright et al., 
2018 

Adults 
(undergraduates) 

Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

801 

Weller et al., 2008 Adults (18− 50) Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$1000 and 
$50,000 

112 

Yeomans et al., 
2008 

Adult women Observational 
(Acute) 

Laboratory No Adjusting 
amount 

$10 147 

Zimmerman et al., 
2018 

Adults Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$100 66 

Continuous 
associations of 
BMI & DD 

Avila et al., 2016 Adolescents Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

Not mentioned 124 

Bennett and 
Blissett, 2017 a Children (2− 4) 

Observational 
(Acute) Laboratory No 

Delay of 
gratification chocolate buttons 95 

Borghans and 
Golsteyn, 2006 

Adults and 
adolescents (16+) 

Observational 
(Acute) 

National 
survey Yes 

Two questions 
to calculate 
discount factor  

2059 

Adults Laboratory No $100 80 

(continued on next page) 
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Table 1 (continued ) 

Biomarker Criteria Reference Study Sample Study Design Study 
Location 

Effect Discounting 
task used 

Magnitude Sample Size 

Brace and Yeomans, 
2016 

Observational 
(Acute) 

Adjusting 
Amount 

Bruce et al., 2011 Children (8− 12) Observational 
(Longitudinal) 

Laboratory Yes Delay of 
gratification 

toy 59 

Chabris et al., 2008 Adults Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

146 

Dassen et al., 2015 Adults (18− 60) Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

152 

de Oliveira et al., 
2016 

Adults Observational 
(Longitudinal) 

Laboratory No Six questions to 
calculate 
discount factor  

486 

Dodd, 2014 Adults & 
adolescents (15+) 

Obserational 
(Acute) 

National 
survey 

Yes Single item task  1868 

Dogbe and Gil, 
2019 

Adults Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

Not mentioned 173 

Duckworth et al., 
2010 

Adolescents Observational 
(Longitudinal) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

105 

Epstein et al., 2003 Adult (18+) Observational 
(Acute) 

Laboratory No Monetary 
Choice 
Questionnaire  

78 

Epstein et al., 
2014a, 2014b 

Adult women 
(18+) 

Observational 
(Longitudinal) 

Online Yes Adjusting 
amount 

10$, $100 199 

Garza et al., 2013 Adults Observational 
(Acute) 

Online Yes Adjusting 
amount 

$1000 172 

Groppe and Elsner, 
2017 a 

Children (6− 11) Observational 
(Longitudinal) 

Laboratory No Delay of 
gratification 

toys and candy 1619 

Hendrickson et al., 
2015 

Adults 
(undergraduates) 

Observational 
(Acute) 

Laboratory No Adjusting 
amount; 
Monetary 
Choice 
Questionnaire 

$10 70 

Hovens et al., 2019 adults (22− 35) Observational 
(Acute) 

National 
survey 

Yes Adjusting 
amount 

$40,000 1027 

Ikeda et al., 2010 Adults Observational 
(Acute) 

Online Yes Five questions 
to calculate 
discount factor 

~$100 2987 

Kekic et al., 2020 a Adults (18+) Observational 
(Acute) 

Online Yes Adjusting 
amount 

100 pounds; 50 
pounds 

432 

Lim and Bruce, 
2015 

Adults Observational 
(Acute) 

Online No Monetary 
Choice 
Questionnaire  

42 

Lu et al., 2014 Adolescents Observational 
(Acute) 

Laboratory No Adjusting 
amount 

$100 87 

Malesza, 2020 a Adults (20− 37) Observational 
(Acute) 

Laboratory Yes Adjusting 
amount task 

300 euros 305 

Meyre et al., 2019 Adults Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

998 

Power et al., 2016 Children (4− 5) Observational 
(Acute) 

Laboratory No Delay of 
gratification  

187 

Reimers et al., 2009 Adults (21− 65) Observational 
(Acute) 

National 
survey 

Yes Single item task  42,863 

Richards et al., 
2010 

Adults (18+) Observational 
(Acute) 

Laboratory Yes Adjusting 
amount  

82 

Rodriguez et al., 
2018 

Adults (18+) Observational 
(Acute) 

Laboratory No Monetary 
Choice 
Questionnaire  

110 

Stojek et al., 2014 Adults Observational 
(Acute) 

Laboratory No Monetary 
Choice 
Questionnaire  

108 

Thamotharan et al., 
2016 

Adolescent women 
(13− 19) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$10 60 

VanderBroek-Stice 
et al., 2017 

Adults Observational 
(Acute) 

Laboratory Yes Monetary 
Choice 
Questionnaire  

181 

Veillard and 
Vincent, 2020 

Adults (18+) Observational 
(Acute) 

Online No Monetary 
Choice 
Questionnaire  

381 

Wang et al., 2016 Adults Observational 
(Acute) 

National 
survey 

Yes Two questions 
to calculate 
discount factor  

6000 

Laboratory Yes  159 
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Table 1 (continued ) 

Biomarker Criteria Reference Study Sample Study Design Study 
Location 

Effect Discounting 
task used 

Magnitude Sample Size 

Westwater et al., 
2019 a 

Adults and 
adolescents 

Observational 
(Acute) 

Monetary 
Choice 
Questionnaire 

Measuring Disease 
Severity 

Appelhans et al., 
2011 a 

Adult women 
(18− 45) 

Experimental 
(Acute) 

Laboratory No Adjusting 
Amount 

$100 62 

Appelhans et al., 
2012 a 

Adult women 
(18− 45) 

Observational 
(Longitudinal) 

Natural 
environment 

No Adjusting 
Amount 

$100 78 

Kishinevsky et al., 
2012 a 

Adult women 
(19− 50) 

Observational 
(Longitudinal) 

Laboratory No 
Monetary 
Choice 
Questionnaire  

19 

Manasse et al., 2014 
Adult women 
(18− 70) 

Observational 
(Acute) 

Laboratory No 
Adjusting 
amount 

Not mentioned 80 

Relationship 
between 
temporal 
discounting and 
biological 
components of 
obesity: 
Neuroimaging 

Deshpande et al., 
2019 Adults 

Observational 
(Acute) Laboratory Yes 

Adjusting 
amount and 
IDT 

$1000 53 

Kekic et al., 2014 Adult Women 
Observational 
(Acute) Laboratory No 

Adjusting 
amount 100 pounds (UK) 17 

Kishinevsky et al., 
2012 a 

Adult women 
(19− 50) 

Observational 
(Longitudinal) 

Laboratory Yes 
Monetary 
Choice 
Questionnaire  

19 

Martin et al., 2015 Adults Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

Not mentioned 19 

Stoeckel et al., 2013 Adult women 
Observational 
(Acute) Laboratory Yes 

Adjusting 
amount Not mentioned 19 

van der Laan et al., 
2016 

Women Observational 
(Acute) 

Laboratory Yes 
Monetary 
Choice 
Questionnaire 

Not mentioned 20 

Westwater et al., 
2019 a 

Adults and 
adolescents 

Observational 
(Acute) Laboratory Yes 

Monetary 
Choice 
Questionnaire  

159 

Neorochemical 
functioning 

Eisenstein et al., 
2015 a Adults 

Observational 
(Acute) Laboratory Yes 

Adjusting 
amount $500 45 

Klement et al., 2018 Men Experimental 
(Acute) 

Laboratory No 
Monetary 
Choice 
Questionnaire  

40 

Lange and Eggert, 
2014 

Adults (university 
students) 

Experimental 
(Acute) 

Laboratory No Adjusting 
amount 

1000 euros 185 

Sawicki et al., 2019 
Healthy men 
(18− 35) 

Experimental 
(Acute) Laboratory No 

Adjusting 
amount $750/$780 100 

Wang and Huangfu, 
2017 

Adults (university 
students; 19− 26) 

Experimental 
(Acute) Laboratory Yes 

Adjusting 
amount 

182/156,000 
yuen 250 

Wang and Dvorak, 
2010 

Adults (university 
students; 19− 51) 

Experimental 
(Acute) 

Laboratory Yes 
Adjusting 
amount 

$750 65 

Measures of disease progression 

Temporal 
discounting as a 
predictor of 
weight change 

Bjorlie and Fazzino, 
2020 

College freshman 
Observational 
(Longitudinal) 

Laboratory No 
Monetary 
Choice 
Questionnaire  

80 

Felton et al., 2020 Adolescents Observational 
(Longitudinal) 

Laboratory Yes 
Monetary 
Choice 
Questionnaire  

154 

Groppe and Elsner, 
2017 a Children (6− 11) Observational 

(Longitudinal) 
Laboratory No Delay of 

gratification 
toys and candy 1619 

Relationship to co- 
morbidities 

Davis et al., 2010 a Adult women 
(25− 45) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$100 209 

Epstein et al., 2019 
Adults with 
Prediabetes 

Observational 
(Longitudinal) Laboratory Yes 

Adjusting 
amount $100 and $1000 65 

Epstein et al., 2020 
a Adults 

Observational 
(Longitudinal) 

Laboratory 
and home 

Yes 
Adjusting 
amount 

$100 and $1000 81 

Fields et al., 2011 a Adolescents 
(13− 19) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$10 36 

Manasse et al., 
2015a 

Women w/ and w/ 
o BED 

Observational 
(Acute) Laboratory Yes 

Adjusting 
amount Not mentioned 74 

Manasse et al., 
2015b 

Overweight and 
Obese Women w/ 
and w/o Binge 
Eating 

Observational 
(Acute) Laboratory Yes 

DDT (adjusting 
amount) Not mentioned 74 

Manwaring et al., 
2011 a 

Adult females 
(18− 65) 

Observational 
(Acute) 

Laboratory Yes Adjusting 
amount 

$100 90 

Mole et al., 2015 a Adults (18+) Observational 
(Acute) 

Laboratory Yes 
Monetary 
Choice 
Questionnaire  

120 

Predict treatment prognosis/outcomes 
Temporal 

discounting as a 
predictor of 

Best et al., 2012 Children 
Experimental 
(Longitudinal) Laboratory Yes 

Monetary 
Choice 
Questionnaire  

185 

(continued on next page) 
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and self-reported questionnaire-based measures of food consumption. 
Specifically, steep TD is associated with disinhibited eating, compulsive 
overeating, food addiction as measured by the Yale Food Addiction 
Scale, as well as other measures of eating disorder psychopathology in 
adults, some of whom self-reported an eating disorder (Kekic et al., 
2020; Lumley et al., 2016; Peng-Li et al., 2020). A recent study also 
revealed that steep TD is associated with a narrowing attentional focus 
in response to dessert cues (as measured by the Attentional Scope Task), 
which the authors suggest may contribute to a heightened drive to 
consume foods, especially those high in fat and sugar (Fields et al., 
2017). Other studies, however, have found no relationship between TD 
and self-reported measures of uncontrolled eating, as assessed by the 
Three Factor Eating Questionnaire (Leitch et al., 2013). Additionally a 

recent study found no significant differences in TD between binge-eaters 
versus non-binge-eaters, as measured by the Binge Eating Scale (Yan 
et al., 2018). 

Others have approached the subject using laboratory-based eating 
studies. One laboratory-based study in overweight/obese women using 
an eating in the absence of hunger protocol found that high levels of 
palatable food intake were predicted by the interaction of TD and he-
donic hunger. Higher hedonic hunger levels were only associated with 
increased food consumption in individuals who were also steep dis-
counters (Appelhans et al., 2011). Similar studies have shown support 
for the relationship between TD, hedonic hunger, and food consumption 
(Ely et al., 2015), and others have found that the relative reinforcing 
value (RRV) of food predicted ad libitum eating, but TD moderated this 

Table 1 (continued ) 

Biomarker Criteria Reference Study Sample Study Design Study 
Location 

Effect Discounting 
task used 

Magnitude Sample Size 

obesity 
treatment 
outcomes 

Manasse et al., 2017 Adults Experimental 
(Longitudinal) 

Laboratory 
Yes 
(negative 
correlation) 

Adjusting 
amount 

$1000 190 

Dassen et al., 2018 a Adults (18+) Experimental 
(Longitudinal) 

Laboratory No Monetary 
Choice 
Questionnaire  

76 
(longitudinal 
portion) 

Manasse et al., 2018 Adults Experimental 
(Longitudinal) 

Laboratory No/Yes Adjusting 
amount 

$1000 189 

Measure treatment effectiveness 

Temporal 
discounting is 
modifiable in 
overweight/ 
obese 
populations 

Kao et al., 2019 Adults 
Experimental 
(Acute) Laboratory Yes 

Adjusting 
amount NT $2000 93 

Lewittes and Israel, 
1978 

Children Experimental 
(Acute) 

Laboratory Yes Delay of 
gratification 

Marshmallow or 
pretzel 

48 

Snider et al., 2020 Adults Experimental 
(Acute) 

Laboratory Yes Brief 5-trial 
adjusting delay 

$100 48 

Stein et al., 2017 Adults 
Experimental 
(Acute) Online Yes 

Adjusting 
amount; Brief 
5-trial adjusting 
delay 

$100 137 

Modified by 
Episodic Future 
Thinking 
interventions 

Athamneh et al., 
2020 Adults 

Experimental 
(Acute) Online Yes 

Monetary 
Choice 
Questionnaire  

255 

Bickel et al., 2020 Adults 
Experimental 
(Acute) 

Laboratory/ 
outpatient No 

Adjusting 
amount $1000 67 

Chang et al., 2020 Adults Experimental 
(Acute) 

Laboratory No 
Monetary 
Choice 
Questionnaire  

136 

Daniel et al., 2013 Adult women Experimental 
(Acute) 

Laboratory Yes Adjusting 
amount 

$100 26 

Daniel et al., 2015 Children (9− 14) Experimental 
(Acute) 

Laboratory Yes Adjusting 
amount 

$50 42 

Dassen et al., 2016 Adult women Experimental 
(Acute) 

Laboratory Yes 
Monetary 
Choice 
Questionnaire  

95 

Hollis-Hansen et al., 
2020 

Adult women & 
children (2− 15) 

Experimental 
(Acute) 

Outpatient No Adjusting 
amount 

Not mentioned 43 

Kakoschke et al., 
2018 

Adults Experimental 
(Longitudinal) 

Outpatient No Adjusting 
amount 

$100 60 

Mansouri et al., 
2020 Adults 

Experimental 
(Acute) Outpatient No 

Brief 5-trial 
adjusting delay $100 33 

Stein et al., 2020 Adults 
Experimental 
(Acute) Laboratory No 

Adjusting 
amount $1000 78 

Sze et al., 2017a, 
2017b Adults 

Experimental 
(Acute) Online Yes 

Monetary 
Choice 
Questionnaire  

204 

Modified by 
weight-loss 
interventions 

Kulendran et al., 
2017 Adults 

Experimental 
(Longitudinal) Outpatient No 

Adjusting 
amount L10 (pounds) 45 

Sofis et al., 2017 a Adult women Experimental 
(Longitudinal) 

Outpatient Yes 
Monetary 
Choice 
Questionnaire  

12 

Takada et al., 2011 Adults 
Experimental 
(Longitudinal) Outpatient Yes 

Two questions 
to calculate 
discount factor 

$10,000 yen 118 

Note; For the purpose of this review, we reported the final sample included in each study. 
Note; Experimental refers to studies that employ a manipulation. Observational refers to studies that observe behavior and do not employ a manipulation. Acute refers 
to studies with a single time point. Longitudinal refers to studies with multiple time points. 

a This paper contains more than one study or refers to more than one obesity domain and was described in more than one subsection of this manuscript. 
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effect; the steeper the TD rate, the greater the total energy intake 
(Rollins et al., 2010). Some work has revealed no relationship between 
TD and food consumption of either bland foods or highly-palatable foods 
(Massicotte et al., 2019), but suggest that examining other executive 
functions (such as inhibition and flexibility) may add important infor-
mation regarding the regulation of food intake (Knolle-Veentjer et al., 
2008; Massicotte et al., 2019; Pieper and Laugero, 2013). 

Finally, some studies have measured food consumption in the natural 
environment, a task that has proven challenging because of the inac-
curacy of existing self-report measures (Johnson, 2002). One study in 
overweight and obese women investigated TD’s relationship to daily 
food consumption for seven days using a weighed food record diary 
(Appelhans et al., 2012). Steeper TD was related to a greater caloric 
consumption of both away-from-home or ready-to-eat foods. Moreover, 
the increased caloric consumption was driven by the caloric density of 
the food (rather than the weight), suggesting that the foods chosen were 
highly processed and highly palatable (Appelhans et al., 2012). This 
suggests that increased TD may be associated with a greater sensitivity 
to hyperpalatable foods (i.e., foods high in fat and/or sugar); in fact, 
neuroimaging studies have shown that obese compared to lean in-
dividuals demonstrate increased activation of reward regions of the 
brain in response to high-calorie food pictures or anticipation of the 
consumption of high-calorie foods (Del Parigi et al., 2003; Murdaugh 
et al., 2012; Ng et al., 2011; Samara et al., 2018; Volkow et al., 2008). 

Other research examined the relationship between TD and food 
consumption in individuals with low SES. For example, heightened TD 
in individuals with low income levels predicts food insecurity (Epstein 
et al., 2014b), which is associated with a 32 % increased odds of being 
obese (Pan et al., 2012). Additionally, TD mediates the effects between 
certainty of meal times and portion size selection (Zimmerman et al., 
2017). That is, in conditions of uncertain meal times (i.e., unknown 
intermeal intervals), often present in individuals with low SES, in-
dividuals with steep TD choose smaller portion sizes than those with 
shallow TD. The authors suggest that TD may be especially influential in 
“chaotic” eating environments, where meal times are uncertain or 
irregular. Therefore, planned or consistent meal times may help to 
regulate food consumption in those individuals with heightened TD. 
Interestingly, research from our group has shown that negative income 
shock, a situation that occurs frequently in individuals with low SES, 
both increases TD as well as demand for fast food in obese individuals 
(Mellis et al., 2018a), which may be one reason why the increased 
purchasing and consumption of fast foods is heightened in communities 
with low SES. Further, a longitudinal study using data from the US 
Bureau of Labor Statistics that tracked 12,686 individuals over 21 years 
found that higher rates of TD (assessed via a two item task; see Box 1 for 
description and limitations of this task variant) were associated with 
increases in BMI over time, with this relationship being strongest in 
counties with the lowest food prices (Courtemanche et al., 2015). 
Lending additional support, heightened TD rates have been observed in 
communities with heightened concentrations of fast food restaurants, 
which are often low SES communities (DeVoe et al., 2013). 

Studies using the delay of gratification, primarily in children and 
adolescents, have shown less support for the interconnected relationship 
to food consumption. That is, some studies have found a positive rela-
tionship between delay of gratification and food intake (Bennett and 
Blissett, 2019), whereas others have shown no relationship (Bennett and 
Blissett, 2017; Pieper and Laugero, 2013) or a negative correlation 
(Hughes et al., 2015). One study in children and adolescents (8− 17 
years of age) found no relationship between delay of gratification and 
food consumption in a laboratory-based buffet where participants were 
instructed to “Let yourself go and eat as much as you want” (Kelly et al., 
2020). Additionally, no association was found between TD and food 
sensitization (as measured by RRV) after two weeks of high energy 
density food consumption in a group of adolescents (Temple et al., 
2020). However, a recent cross-sectional study in low income children 
found a significant positive association between delay of gratification 

and RRV; this association was only found in girls (not boys) (Gearhardt 
et al., 2017). Finally, difficulty to delay gratification was associated with 
parental ratings of emotional overeating in children (6− 11 years of age) 
(Groppe and Elsner, 2014). Only one study utilized a delay of gratifi-
cation task in schizophrenic adults and healthy controls, finding no as-
sociation with self-reported measures of uncontrolled eating 
(Knolle-Veentjer et al., 2008). 

Collectively, this body of research demonstrates that TD is associated 
with overconsumption of foods, especially unhealthy, high energy 
density foods, with individuals in low SES standing being especially 
vulnerable to this effect. However, studies that utilize the delay of 
gratification task (prominently those in children and adolescence) show 
less of a relationship to food consumption, which suggests either a 
developmental effect (i.e., the relationship only emerges in adulthood) 
or a methodological one (i.e., TD is a more sensitive measure than delay 
of gratification). 

3.2.2. Energy expenditure 
Lack of physical activity and sedentary behavior are other mal-

adaptive behaviors impacting overweight and obese outcomes. Limited 
work has been done to investigate the relationship between TD and 
physical activity in obese individuals. Cross-sectional studies have 
revealed a clear association between BMI and physical activity behav-
iors, showing negative correlations to exercise and positive correlations 
to sedentary behaviors (e.g., screen time) (Banks et al., 2011; Dwyer--
Lindgren et al., 2013; Melby et al., 2019). Moreover, a meta-analysis 
analyzing 52 studies found that steeper discounting is predictive of 
decreased exercise behaviors, albeit with a small effect size (Sweeney 
and Culcea, 2017), and newer cross-sectional work has found an asso-
ciation between steep TD and decreased weekly exercise sessions 
(LeComte et al., 2020). Our laboratory has also shown that steep TD is 
associated with lower levels of physical activity in prediabetic adults as 
measured by acceleromoetry data captured over one week (Epstein 
et al., 2020). Additionally, one community-based study in a low-income, 
urban, African American neighborhood found that steep TD predicted 
being in a less advanced stage of physical activity, that is, a pre-
contemplation or preparation phase rather than an action or mainte-
nance phase (Leonard et al., 2013). 

Few studies have taken an interventional approach to examine how 
physical activity engagement impacts TD in overweight or obese in-
dividuals. One investigation on the effects of contingency management 
on physical activity among inactive, overweight adults found that 
heightened rates of TD predicted exercise non-adherence (Phillips et al., 
2019). No studies to date have examined the acute effects of exercise on 
TD; however, preliminary evidence suggests that long-term exercise 
significantly decreases TD in individuals with weight-related issues 
(Sofis et al., 2017). Future research is needed to investigate the inter-
action between BMI, TD, and physical activity. Programs that target TD 
to increase physical activity need to consider a range of activities, 
includingexercise and lifestyle activities such as housework, yard work, 
walking up the steps, and less screen time. Considering alternatives to 
traditional aerobic exercise may be especially important in overweight 
and obese populations who find this type of movement physically 
difficult or inherently aversive (Dalle Grave et al., 2011). Of relevance, a 
recent study found that physical activities requiring greater amounts of 
energy expenditure (e.g., walking versus sitting) are discounted more 
steeply and thus may require greater incentives for participation (Hsu 
and Vlaev, 2014). 

Poor sleep patterns are also considered here as a maladaptive 
behavior because they: 1) contribute to TDEE; 2) are an important 
regulator of neuroendocrine function and glucose metabolism; and 3) 
have been linked to obesity (e.g., insufficient sleep; sleep deprivation) 
(Beccuti and Pannain, 2011; Markwald et al., 2013). A large 
cross-sectional study in 4524 children between the ages of 8 and 11 
found that steeper discounting rates were associated with lower adher-
ence to the Canadian 24-Hour Movement Guidelines for Children and 
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Youth, which included recommendations for daily sleep time, recrea-
tional screen time, and physical activity (Guerrero et al., 2019). Addi-
tionally, one study using actigraph measures for 7 days found that TD 
moderated the relationship between various sleep measures and BMI 
(Chan, 2017). Namely, irregular sleep patterns (i.e., circadian 
desynchronization) were associated with heightened BMI, and in-
dividuals with steeper discounting were more vulnerable to this effect 
(Chan, 2017). 

Collectively, this work suggests that high TD is associated with 
decreased physical activity and impaired sleep, which along with 
increased food consumption, contributes to heightened BMI and over-
weight or obese outcomes. More interventional studies are needed to 
examine the impact of increasing physical activity on TD. 

4. Disease diagnosis 

When an individual has progressed from being at risk to acquiring a 
disease, the second measure of a biomarker’s utility is to detect the 
presence of such a disease. This section first considers the evidence that 
TD can distinguish between individuals with and without obesity. Next, 
we examine if TD can predict the magnitude of obesity (i.e., disease 
severity). Lastly, we consider the evidence for associations between TD 
and biological components of obesity, including neuroanatomical and 
cellular/molecular functioning. 

4.1. Distinguishing obese from non-obese 

To qualify as a behavioral marker, TD should sufficiently differen-
tiate individuals with and without obesity. Research comparing TD rates 
among obese individuals and healthy controls has repeatedly shown that 
obese individuals have a comparatively higher average discount rate. 
The first published investigation of greater TD compared rates between 
obese women and demographically matched healthy weight women 
(Weller et al., 2008). Across two magnitudes ($1000, $50,000), the 
obese group discounted delayed monetary rewards significantly more 
than controls. Specifically, the delayed hypothetical $1000 lost 50 % of 
its subjective value at a 6-month delay among healthy weight in-
dividuals, while among obese individuals, the same amount lost 50 % of 
its value in approximately 3 months. More striking differences were 
noticed in the $50,000 hypothetical task, where for healthy weight in-
dividuals, a 50 % loss of value was seen at 36 months, while for obese 
individuals, this same percentage loss was seen at 3 months. The ability 
of TD to distinguish individuals with obesity from healthy weight in-
dividuals has been replicated in six subsequent studies of adolescents 
(Feda et al., 2015; Fields et al., 2013, 2011; Kulendran et al., 2016, 
2014; Verdejo-García et al., 2010) and 19 studies of adults (Bickel et al., 
2014a; Buono et al., 2015; Davis et al., 2010; DeHart et al., 2020; Garza 
et al., 2016; Graham Thomas et al., 2015; Hendrickson and Rasmussen, 
2017; Jarmolowicz et al., 2014; Lawyer et al., 2015; Mole et al., 2015; 
Morys et al., 2018; Myers et al., 2020; Price et al., 2016; Simmank et al., 
2015; Soofi et al., 2019; Steward et al., 2017; Stoklosa et al., 2018; Syan 
et al., 2019; Zimmerman et al., 2018). One study in adult undergraduate 
students showed that obese individuals had significantly greater TD 
rates when compared to underweight individuals, but not to healthy 
weight individuals (Wainwright et al., 2018). Additionally, in another 
study obese individuals with binge eating disorder (BED) had signifi-
cantly greater rates when compared to a group of obese without BED and 
healthy controls, but the obese only group was not significantly different 
than the healthy controls (Manwaring et al., 2011). 

In contrast, ten case-control studies have demonstrated no significant 
relationship between monetary discounting and weight status (Bickel 
et al., 2018; Bongers et al., 2015; Call et al., 2017; Dassen et al., 2018; 
Eisenstein et al., 2015; Hendrickson and Rasmussen, 2013; Kulendran 
et al., 2016; Nederkoorn et al., 2006; Schiff et al., 2016; Yeomans et al., 
2008). However, the majority of these studies include one or more 
methodological considerations that may limit the generalizability of 

these findings, including: 1) the use of small amounts of money in dis-
counting tasks, which may not elicit group differences (Hendrickson and 
Rasmussen, 2013; Schiff et al., 2016; Yeomans et al., 2008); 2) sampling 
from treatment-seeking individuals, who may possess greater self con-
trol and future valuation than the obese population at large (Bickel et al., 
2018; Bongers et al., 2015; Call et al., 2017; Dassen et al., 2018; 
Kulendran et al., 2016; Schiff et al., 2016); and 3) groups differing 
significantly by education and/or income status (Bickel et al., 2018; 
Bongers et al., 2015). While several studies showing a positive associ-
ation between TD and obesity also included potential limitations such as 
groups differing by education and/or income (Davis et al., 2010; Fields 
et al., 2013; Graham Thomas et al., 2015; Morys et al., 2018; Myers 
et al., 2020; Stoklosa et al., 2018) and inclusion of treatment seeking 
individuals (Fields et al., 2011; Steward et al., 2017), a smaller pro-
portion of the studies demonstrating a positive association presented 
these potential limitations (8/28) compared to the studies showing no 
association (8/10). 

Investigations of continuous associations between TD and body mass 
index have demonstrated similar findings. Fifteen studies of adults 
(Borghans and Golsteyn, 2006; Chabris et al., 2008; Dassen et al., 2015; 
Dogbe and Gil, 2019; Epstein et al., 2014a; Garza et al., 2013; Hovens 
et al., 2019; Ikeda et al., 2010; Kekic et al., 2020; Malesza, 2020; Meyre 
et al., 2019; Reimers et al., 2009; Richards et al., 2010; VanderBroek--
Stice et al., 2017; Wang et al., 2016), three of adolescents (Avila et al., 
2016; Duckworth et al., 2010; Thamotharan et al., 2016) and two 
studies of adolescents and adults (Dodd, 2014; Westwater et al., 2019) 
have found a significant positive relationship between discounting rate 
and BMI. In contrast, eight studies in adults demonstrated no significant 
relationship between discounting rate and BMI (Brace and Yeomans, 
2016; Epstein et al., 2003; Hendrickson et al., 2015; Lim and Bruce, 
2015; Power et al., 2016; Rodriguez et al., 2018; Stojek et al., 2014; 
Veillard and Vincent, 2020). Additionally, a study of chinese adolescents 
found a negative association between discounting rate and BMI for both 
males and females, while a positive association between discounting 
rate and percent body fat was observed for females (Lu et al., 2014). 
Again, methodological considerations potentially limit the interpreta-
tion of these findings including: 1) the use of small amounts of money in 
discounting tasks (Hendrickson et al., 2015); 2) a restricted range of BMI 
in the sample (Brace and Yeomans, 2016; Epstein et al., 2003; Rodriguez 
et al., 2018); and 3) inclusion of individuals seeking treatment or 
interested in weight loss (Lim and Bruce, 2015; Stojek et al., 2014; 
Veillard and Vincent, 2020). While a small number of continuous studies 
demonstrating a positive association between TD and BMI also included 
the potential limitation of small amounts of money in the discounting 
task (Epstein et al., 2014a; Thamotharan et al., 2016), the overall pro-
portion of studies demonstrating positive association between TD and 
BMI is lower (2/20) compared to studies showing no association (7/9). 

An additional avenue of investigation has been to examine children’s 
ability to delay gratification in relation to weight status. These studies 
have demonstrated mixed results. For case-control, one study found that 
ability to delay gratification for an edible reward was significantly 
different between obese and healthy weight children (Bonato and 
Boland, 1983). In contrast, two studies showed that delay was not 
associated with weight status but was associated with weight relevant 
factors. Geller et al. (1981) compared ability to delay gratification for a 
food reward in obese and non obese children and showed that while 
there was no difference in delay, the obese children ate the reward 
faster. Additionally, Gearhardt et al. (2017) showed that while delay did 
not predict weight status, it did predict higher relative reinforcing value 
of food in girls. Continuous associations of BMI and ability to delay 
gratification have shown similar mixed findings. One study showed that 
children with higher bmi were less likely to delay receiving a non-edible 
reward (Bruce et al., 2011). While two studies involving edible rewards 
(Bennett and Blissett, 2017; Power et al., 2016) and one of non-edible 
rewards (Groppe and Elsner, 2017) demonstrated no association be-
tween ability to delay gratification and weight status. Gearhardt et al. 
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(2017) suggest that at the early childhood developmental stage, ability 
to delay gratification for food may reflect differences in emotional 
regulation, as opposed to executive function. 

In sum, investigations have demonstrated a robust association of 
higher TD rates with obesity in case-control and continuous study de-
signs, with a majority of case-control studies (28 out of 38) and 
continuous studies (20 out of 29) showing a positive effect. Additionally, 
we have outlined methodological considerations that may limit the 
interpretation of non-significant results. Studies investigating ability to 
delay gratification in children, a similar construct to TD, have shown 
mixed associations with weight status. However, this should be inter-
preted cautiously, as differences in developmental state may limit direct 
comparison to TD. Overall, considerable methodological variation exists 
across investigations of weight status and TD and the development of 
best practices for study design could help to clarify these discrepancies. 

4.2. Measuring disease severity 

For individuals who already present with a disease diagnosis, a 
biomarker’s potential utility is to measure disease severity. Four studies 
have examined the relationship between TD and BMI in overweight/ 
obese and obese-only samples. Appelhans and colleagues examined 
overweight/obese women in two separate studies and found no signif-
icant relationship between TD and BMI (Appelhans et al., 2011, 2012). 
Kishinevsky et al. examined obese women and found no significant 
relationship between TD and BMI (Kishinevsky et al., 2012). Lastly, 
Manasse et al. examined overweight/obese women with and without 
loss-of-control eating and found no signficant relationship between TD 
and BMI (Manasse et al., 2014). These results suggest that in already 
obese individuals, TD is not a predictor of disease severity. However, all 
four studies examined women-only samples and three out of four studies 
included restricted age ranges (Appelhans et al., 2012, 18− 45 in 2011; 
and 19− 50 in Kishinevsky et al., 2012). Further investigations in male 
and mixed-gender samples across a greater age range will be necessary 
to determine these findings’ generalizability. 

4.3. Relationship between temporal discounting and biological 
components of obesity 

Here we explore the relationship between TD and biological alter-
ations associated with obesity. We first discuss neuroimaging studies of 
brain structure and function using magnetic resonance imaging (MRI) 
and functional MRI (fMRI), then discuss the literature on biological al-
terations and its relationship to TD in obese populations. We acknowl-
edge the potential limitations of fMRI measures outlined in a recent 
meta-analysis by Elliott et al. (2020), including poor reliability and 
test-retest reliability. 

4.3.1. Neuroimaging and neuromodulation 
Investigations of obesity and TD have utilized both MRI and fMRI, 

allowing researchers to examine brain activity while individuals are 
making decisions. The examination of TD in neuroimaging research 
compares brain maps between decisions, appropriately named “hard” 
versus “easy” (McClure et al., 2007, 2004). “Hard” trials are defined as 
trials where the subjective value is similar between the immediately 
available and delayed choice. “Easy” trials, on the other hand, have 
larger differences in the subjective value between choices available 
immediately and after a delay. 

Examinations of TD and addiction using both MRI and fMRI, and 
primarily the examination of “hard” versus “easy” trials, have led to the 
development of the competing neurobehavioral decision system (CNDS) 
theory (McClure et al., 2004). The CNDS theory proposes that in-
dividuals make choices based on the interaction of two decision systems 
in the brain, the executive and the impulsive, and dysregulation between 
these systems can cause pathology, such as addiction (Bickel et al., 2011, 
2007; McClure and Bickel, 2014). The impulsive system, composed of 

the limbic (e.g., amygdala, striatum) and paralimbic (e.g., insula, nu-
cleus accumbens) regions of the brain, is associated with the valuation of 
immediate reinforcers (e.g., food), and responds to emotionally charged 
stimuli (e.g., threatening or fearful situations) (Bickel et al., 2016, 2013, 
2011). The executive system, composed of the parietal lobes and areas of 
the prefrontal cortex, is involved in future thought, prospection, and the 
valuation of temporally extended reinforcers (e.g., health). The execu-
tive system is also responsible for remembering recent events and 
modifying plans as time passes (Bickel et al., 2016, 2013, 2011). The 
CNDS theory also serves as a framework to understand differences in 
obese individuals’ neural activity during decision-making processes 
(Price et al., 2016). Recent reviews have described the relationship be-
tween obesity and the prefrontal cortex (PFC). Gluck et al. (2017) re-
ported that obese individuals have lower excitation levels in the 
executive system (i.e., left dorsolateral PFC) than lean controls. Lowe 
et al. (2019) reviewed the relationship between the PFC and obesity and 
highlighted a potential reciprocal relationship between them (i.e., 
changes in the PFC may lead to alterations in reward properties from 
food and ultimately overconsumption; see Lowe et al., 2019). 

Lavagnino et al. (2016) reviewed neuroimaging studies of obesity 
and TD (along with tasks that measure inhibitory control). They re-
ported that, congruent to other results, obese individuals had both 
greater TD and impaired inhibitory control (i.e., impairment of the ex-
ecutive system) compared to non-obese controls. The study also indi-
cated that lower activation of the executive system (i.e., PFC) affects 
both TD and BMI. Stoeckel et al. (2013) evaluated TD rates in obese 
women using fMRI, but compared areas of activation between “hard” 
and “easy” trial difficulties. Consistent with the results reported by 
Lavagnino et al. (2016); Stoeckel et al. (2013) demonstrated that greater 
rates of TD were associated with smaller changes in activation of exec-
utive function brain regions between “hard” and “easy” trials. That is, 
individuals who did not experience as much activation in the executive 
region between “easy” and “hard” trials showed high rates of TD (i.e., 
they were less willing to wait for a reward). 

Kishinevsky et al. (2012) used fMRI to investigate brain region 
activation in obese women during “hard” and “easy” task trials. 
Congruent with previous findings, Kishinevsky et al. reported that 
“hard” trials on the TD task corresponded to activation of regions 
associated with the executive function system (i.e., middle and inferior 
frontal gyri and medial PFC). Interestingly, Kishinevsky et al. reported 
that decreased activation in these executive function areas predicted 
greater weight gain rates over the 1.3–2.9 years of follow up. These 
results suggest that executive function areas, such as the PFC, are related 
to obesity, weight gain, and TD. 

One fMRI study has examined the relationship between obesity, TD, 
and quality of sleep. Martin et al. (2015) reported that for all partici-
pants a significant percent signal change was observed when comparing 
the selection of the smaller, immediately available reward to the base-
line condition of viewing a fixation cross, regardless of the quality of 
sleep. The significant percent signal change was observed in regions 
associated with both the executive system (i.e., middle, medial and 
inferior frontal gyri) and the impulsive system (i.e., insula, lentiform 
nucleus/medial globus pallidus, and cingulate). Furthermore, when 
making impulsive decisions, poor quality sleepers had lower brain 
activation in areas associated with the executive system (i.e., right 
inferior and right middle frontal gyri) and the impulsive system (i.e., 
bilateral insula) than the good quality sleepers. Note in other studies that 
sleep deprivation has been reported to be associated with effort dis-
counting, but not TD (Libedinsky et al., 2013). 

One fMRI study examined the relationship between individuals with 
obesity, prediabetes, and TD. Deshpande et al. (2019) compared hard 
versus easy trials in the TD task, as well as immediate available versus 
immediate unavailable. Similar to results mentioned above, “hard” trials 
had increased activation in areas of the executive system (medial fron-
tal, bilateral superior frontal, middle frontal gyrus, and bilateral inferior 
parietal lobules) compared to “easy” trials. “Easy” trials, on the other 
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hand, resulted in increased activation of the impulsive system (right 
insula and bilateral middle temporal gyrus). 

Another fMRI study conducted in weight-concerned women exam-
ined the relationship between TD and brain activity when choosing 
between high and low energy snacks. Van der Laan et al. (2016) reported 
that TD rates were positively correlated with activation in the bilateral 
striatum (an area of the impulsive system); women with higher TD had 
more activation in this area in high energy food choices compared to low 
energy food choices. 

An MRI study conducted by Westwater et al. (2019) examined the 
relationship between TD, cortical thickness, BMI and adiposity in 
healthy adolescents. The study reported that although adiposity and TD 
rates were unrelated, both higher adiposity and higher TD rates were 
related to lower left triangular inferior frontal gyrus thickness (a region 
involved in the executive system). 

In addition to neuroimaging studies examining brain structure and 
function, one study examined the effects of transcranial direct current 
stimulation (tDCS) of the PFC on food craving and TD in women of 
healthy and overweight BMIs. While Kekic et al. (2014) did not report 
changes in TD after sham or active tDCS like others have reported in 
non-obese populations (Figner et al., 2010), they reported that in-
dividuals who received active tDCS had sharper decreases in the Food 
Challenge Task (FCT), used to assess food cravings, than the individuals 
who received sham tDCS when including TD rate as a covariate. These 
results suggest that individuals who are less impulsive (willing to wait 
for temporally extended rewards) are more susceptible to the 
anti-craving effects of tDCS on the PFC (Kekic et al., 2014). 

4.3.2. Neurochemical functioning 
Other research has examined neurochemical alterations underlying 

individual differences in TD in obesity. Investigations have primarily 
focused on dopamine, a neurotransmitter produced in the ventral 
tegmental area and substantia nigra pars compacta and released in the 
striatum, nucleus accumbens, and regions of the prefrontal cortex. 
Dopamine is involved in reward and motivation, and dysregulation in 
this system has been found to be a prominent biomarker in individuals 
with substance use disorders (Volkow et al., 2016, 2009, 2007). 
Recently, obesity has been conceptualized as a food addiction by some 
investigators (Ferrario, 2017; Lerma-Cabrera et al., 2016). Supporting 
evidence indicates that similar alterations in the dopaminergic system 
observed in addiction are seen in individuals with obesity (Blumenthal 
and Gold, 2010; Schulte et al., 2015; Volkow et al., 2017; Wang et al., 
2001). Specifically, positron emission tomography was utilized to 
examine the relationship between striatal D2 receptor binding and TD in 
obese and non-obese individuals (Eisenstein et al., 2015). Steeper TD 
was related to lower ß-cell function in the total sample and decreased 
insulin sensitivity and heightened striatal D2 receptor binding in obese 
individuals (Eisenstein et al., 2015). Interestingly, a recent meta analytic 
study found no significant association between D2 receptor availability 
and TD in healthy individuals, but significant positive associations 
among individuals with obesity (Castrellon et al., 2019). That is, steeper 
TD is associated with heightened dopamine D2 receptor expression in 
obese but not healthy weight individuals (Castrellon et al., 2019). 
Similarly, rodent studies have shown that chronic exposure to a high-fat, 
high-sugar diet induces alterations in the dopamine D2 receptor system 
(Narayanaswami et al., 2013; Robertson and Rasmussen, 2017). The 
pharmacological blockade of the dopamine system with haloperidol (a 
D2 receptor antagonist) also leads to increased TD in rats fed an 
obesity-inducing diet (Boomhower and Rasmussen, 2014; Robertson 
and Rasmussen, 2017). Collectively, this work shows that dopamine 
pathology (e.g., lower dopamine levels and higher receptor density) in 
obese individuals may play a role in heightened TD. 

Another area of inquiry has focused on the association between TD 
and blood glucose levels. Studies have shown that acute ingestion of 
glucose (i.e., sugar water) in fasting individuals significantly decreases 
TD, with a significant negative association seen between blood glucose 

level and TD (Wang and Dvorak, 2010; Wang and Huangfu, 2017). The 
greater the rise in blood glucose, and the greater the decrease in hunger, 
the greater the effect on decreasing TD. Consumption of zero-calorie 
artificial sweeteners that do not increase blood glucose level either did 
not affect (Wang and Huangfu, 2017) or significantly increased TD 
(Wang and Dvorak, 2010). Other studies, using sugar sensing (oral 
mouth rinse), sugar ingestion, or consumption of a normal meal 
(breakfast) have failed to show this effect (Lange and Eggert, 2014; 
Sawicki et al., 2019). The only study investigating this relationship in 
individuals with obesity utilized a glucose clamp test, the gold standard 
to increase blood sugar without the confounding effect of the gustatory 
component of sweet tastes (Klement et al., 2018). Klement et al. (2018) 
found that increasing blood glucose did not alter TD in either lean or 
obese men, concluding that a low energy body state does not impact TD 
and that other mechanisms may be at play. As obese individuals report 
higher levels of hedonic hunger or having a heightened reward response 
to the taste and consumption of food, the neural mechanisms supporting 
these processes and their relationship to TD will be an interesting area of 
future inquiry. 

Finally, a hypothesis-based paper on the neuroeconomic theory of 
obesity suggested that various neurochemicals involved in obesity may 
regulate TD and be important parameters to consider in association with 
TD (Takahashi, 2010). For example, gastrointestinal hormones such as 
ghrelin, leptin, cholecystokinin, glucagon-like peptide-1 (GLP-1), and 
peptide YY regulate the gut-brain axis, control food intake, and are 
important regulators of obesity (Adamska et al., 2014; Perry and Wang, 
2012; Steinert et al., 2017). In fact, new pharmacotherapies for obesity, 
such as Liraglutide (Saxenda), target GLP-1 receptors (GLP-1 agonists) 
and have been shown to promote weight loss in patients with or without 
Type 2 diabetes (Crane and McGowan, 2016; Rajeev and Wilding, 
2016). Additionally, serotonin and norepinephrine regulate metabolism 
and have been implicated in overweight/obese outcomes as 
serotonin-norepinephrine reuptake inhibitors (SNRIs) help decrease 
food intake and have been utilized for obesity treatment (Kim et al., 
2013; Luque and Rey, 1999; Yabut et al., 2019). Finally, stress hormone 
production (e.g., cortisol; catecholamines) regulates dietary preference, 
food consumption, and adiposity distribution and has been shown to be 
dysregulated in obesity (Kyrou and Tsigos, 2009; Scott et al., 2012; 
Tomiyama, 2019; Torres and Nowson, 2007). Future work will explicitly 
need to examine the relationship between TD and each of these candi-
date molecular markers in obesity. 

Collectively, this work demonstrates that increased TD in obese in-
dividuals may be due to functional impairments in regions of the CNDS 
including those involved in both the executive and impulsive systems. In 
addition, alterations in dopamine dynamics, glucose metabolism, and 
other neuromodulators involved in obesity (e.g., serotonin, norepi-
nephrine, gastrointestinal hormones, cortisol) may be a driver of 
increased rates of TD. Future animal and human studies are needed to 
determine the exact biological changes (both in brain structure and 
function) that underlie TD changes in obesity. 

5. Measures of disease progression 

The third function of a biomarker for obesity is to effectively identify 
individuals at risk for disease progression (i.e., weight gain) and/or at 
risk for complications from comorbidities. Here we review the evidence 
that TD can effectively measure disease progression of obesity. First, we 
review studies examining TD’s ability to predict weight gain. Second, we 
examine evidence of differences in TD among obese individuals with and 
without comorbidities, such as binge eating disorder (BED). 

5.1. Temporal discounting as a predictor of weight change 

Pertinent to this discussion is TD’s ability to predict weight change in 
an individual over time. Strong empirical support for this predictive 
ability requires measurements of TD or delay of gratification and weight 
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(across at least two points in time). To our knowledge, only two studies 
have longitudinally examined the ability of TD to predict weight change 
(Bjorlie and Fazzino, 2020; Felton et al., 2020). 

Felton et al. (2020) examined TD in relation to weight status during 
adolescence. Individuals aged 11–15 years old at the beginning of the 
study completed yearly assessments over a six-year period, allowing an 
analysis of TD’s developmental trajectory. Findings suggested a signif-
icant relationship between TD’s trajectory and changes in BMI over 
time, with adolescents who experienced increases in TD rates more 
likely to experience abrupt increases in BMI. 

Bjorlie and Fazzino (2020) examined whether TD at the beginning of 
the freshman year predicted weight gain across the academic year. Re-
sults suggested that TD was not significantly associated with weight at 
follow-up when accounting for baseline weight and height. This study 
possessed several limitations. Notably, only 22 out of 80 participants 
gained weight (4.60 kg, SD = 1.80), reducing the potential predictive 
ability of TD. Additionally, this study over-sampled participants with 
risky drinking patterns which could be a potential confound with higher 
TD rates. 

Additionally, one study longitudinally examined the ability of delay 
of gratification to predict weight change in children. Groppe and Elsner 
(2017) investigated longitudinal associations between delay of gratifi-
cation and BMI in children aged 7− 11 years old. Delay of gratification 
and BMI were obtained at two time-points one year apart. No significant 
association between delay of gratification and change in BMI was 
detected. However, change in BMI was limited (p = .90), and therefore 
there was not much variance to be explained by a predictor. Although 
the study detected associations between other executive function mea-
sures and BMI, the longitudinal effects were small. 

In summary, three studies have investigated the relationship be-
tween TD or delay of gratification and weight change over time. One 
study (Felton et al., 2020) used baseline and follow up measurement of 
TD/weight, and showed a positive significant relationship between 
change in TD and weight over time, while two other studies examined 
TD (Bjorlie and Fazzino, 2020) or delay of gratification (Groppe and 
Elsner, 2017) at baseline and showed no significant relationship with 
weight gain. The small number of investigations prevents any definitive 
statement regarding TD or delay of gratification’s ability to predict 
weight change over time. The field would benefit from additional lon-
gitudinal studies to further examine the ability of TD to predict weight 
change. 

5.2. Relationship to co-morbidities 

Obesity related comorbidities are an important consideration when 
validating a potential biomarker of obesity. Comorbidities including 
cardiovascular disease and diabetes can decrease quality of life and in-
crease mortality for individuals with obesity (Abdelaal et al., 2017). TD 
has been examined in obese individuals with maladaptive health be-
haviors, such as smoking, and comorbid diagnoses, including 
pre-diabetes and eating disorders. 

One study has examined the relationship between TD, obesity and 
smoking in adolescents and reported that obese adolescent smokers have 
higher rates of TD than healthy weight adolescent smokers (Fields et al., 
2011). Two studies examined the relationship between TD rate, BMI, 
and HbA1c in individuals with pre-diabetes. Epstein et al. (2019) 
examined the association between changes in BMI, HbA1c, and TD rate 
in individuals with pre-diabetes over one year. The results indicated that 
changes in HbA1c were significantly related to both changes in BMI and 
TD rate. The second study by Epstein et al. (2020) examined the rela-
tionship between TD, HbA1c, medication adherence, diet quality, and 
exercise among individuals with pre-diabetes who were also prescribed 
medication for comorbidities related to pre-diabetes and obesity (i.e., 
hypertension and/or lipidemia; Nguyen et al., 2008). TD rates for both 
$100 and $1000 were related to BMI and adherence for hypertension 
and/or dyslipidemia medications, where individuals with higher BMI 

and lower medication adherence had higher rates of TD. Additionally, 
TD rates for $1000 were related to HbA1c and physical activity; in-
dividuals with higher HbA1c and lower physical activities reported 
higher rates of TD. 

Other obesity-related comorbidities include eating disorders such as 
bulimia nervosa (BN) and binge eating disorder (BED). A recent sys-
tematic review reported that obesity, BN, and BED are associated with 
increased rates of TD (McClelland et al., 2016). Five studies have 
examined TD in individuals with BED and obesity. First, Davis et al. 
(2010) reported that both obese individuals with comorbid BED and 
individuals with BED alone reported higher discounting than normal 
weight controls. Interestingly, the group differences were not significant 
when education was added to the model (Davis et al., 2010). Second, a 
study by Manwaring et al. (2011) reported that obese women with co-
morbid BED discounted more than obese women without BED, and 
controls. Third, consistent with the previously mentioned studies, 
Manasse et al. (2015b) reported that overweight and obese women with 
BED discounted more than overweight and obese women (without or 
with subthreshold BED). Fourth, Mole et al. (2015) examined TD in 
obese individuals with and without BED and abstinent 
alcohol-dependent individuals. Obese individuals with BED, obese in-
dividuals without BED, and alcohol-abstinent individuals had higher TD 
rates than healthy controls (Mole et al., 2015). Interestingly, BMI was 
not correlated with k-value in obese individuals with or without BED in 
this sample (Mole et al., 2015). Fifth, Manasse et al. (2015a) report that 
in treatment seeking overweight and obese women, those with binge 
eating episodes had higher TD rates and higher hedonic hunger than 
individuals without binge eating episodes. Together, these results of the 
significant relationship between TD, obesity and obesity-related 
comorbidities suggest that having both obesity and obesity-related 
comorbidities is associated with more extreme discounting (less valua-
tion of the future) than having obesity alone. 

6. Predict treatment prognosis/outcomes 

A fourth utility of a behavioral marker is the ability to indicate 
treatment prognosis/outcomes. Although the standards for successful 
treatment of obesity have evolved with our understanding of the disease 
process, weight loss has been the traditional outcome measure of 
effectiveness (Atkinson, 1993). The identification of TD as a reliable 
predictor of treatment prognosis is relevant to inform weight loss stra-
tegies that can be tailored to leverage treatment effectiveness. In this 
section, we review studies that measured TD at the beginning of a weight 
loss program and investigated the association with weight change after 
completion. 

6.1. Temporal discounting as a predictor of obesity treatment outcomes 

The ability of TD to predict the impact of treatment strategies on 
weight loss is of great relevance to forecast successful treatment out-
comes. Three studies have examined TD and weight loss in association 
with behavioral weight-loss interventions (Best et al., 2012; Dassen 
et al., 2018; Manasse et al., 2017). The studies reviewed in this section 
provide mixed evidence regarding their association. 

Two studies have found a significant relationship between TD and 
weight change. Best et al. (2012) assessed TD in overweight children 
aged 7–12 years old that were enrolled in a 16-week family-based 
treatment. The study results indicated a small to medium effect 
(Cohen’s d = 0.39) of TD on children’s change in percent weight. 
Children who showed a greater discounting rate at baseline lost less 
weight by the 9-week time point and the 16-week time point than those 
who showed a smaller discounting rate at baseline. On average, children 
with low discounting lost 3.5 kg (5.9 % reduction in weight), while 
children with high discounting lost 2.3 kg (4.2 % reduction in weight). 

Manasse et al. (2017), examined TD in overweight and obese adults, 
aged 17–80 years old, who were randomized to a 12-month standard 
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behavioral treatment (SBT) or acceptance-based behavioral treatment 
(ABT). Overall, participants assigned to the ABT condition showed a 
greater percent weight loss than participants assigned the SBT condition 
(i.e., 13.8 % and 9.8 %, respectively) which also had greater rates of 
weight regain, suggesting that the latter was less effective. Participants 
in the ABT group who showed a steeper TD at baseline lost more weight 
at 12 months, while participants in the SBT group lost similar amounts of 
weight regardless of baseline discounting rate. This study suggests that 
TD’s ability to predict weight loss is moderated by treatment type. 
Contrary to the authors’ hypothesis, steeper TD was associated with 
greater weight loss. However, the authors discuss that because ABT re-
lies on the ability of a person to make less pleasurable short-term choices 
to achieve long-term goals, individuals who have a greater focus on 
short-term options (i.e., greater TD) might respond better to this type of 
treatment. Furthermore, in cases where a treatment is ineffective (SBT), 
any outcome marker (TD) could be expected to lack predictive utility. 

A single study found no significant relationship between TD and 
weight change. Dassen et al. (2018) examined whether executive func-
tion and TD predicted weight change in individuals with obesity 
enrolled in a 6-month multidisciplinary weight loss program. Obese 
participants aged 18–71 years old completed multiple assessments, 
including TD and the n-back task to assess working memory (Boselie 
et al., 2016) at baseline. Overall, participants lost an average of 7.22 % 
of their BMI at baseline, with a range of 1.16 % increase to 23.50 % 
decrease. The findings revealed that behavioral working memory was 
the strongest predictor of change in BMI, and although TD exhibited an 
inverse relationship with BMI change, this relationship was not statis-
tically significant. 

Related to this discussion, an additional study examined whether TD 
predicted dietary lapse risk and whether TD moderated the impact of 
momentary levels of internal states on dietary lapse occurrence within 
the first two weeks of a behavioral weight-loss intervention (Manasse 
et al., 2018). Even though this study did not find a significant main effect 
of TD on dietary lapse risk, TD significantly moderated the relationship 
between the internal state of fatigue as measured by the Positive and 
Negative Affect Scale (PANAS) and likelihood of lapse, such that a 
stronger relationship was observed among greater discounters. 
Although lapse risk at the beginning of an intervention might be a 
limited measure of treatment outcome, studies like this one can reveal 
behavioral patterns associated with weight problems that could be 
tackled before or in combination with weight loss initiatives, and, 
therefore improve its outcomes. 

Given the small number of studies and the mixed results regarding 
TD’s ability to predict treatment outcomes, further research is needed to 
better comprehend the relationship between TD and weight loss in 
treatment settings. The possibility of modifying TD with effective in-
terventions will be discussed in the next section. 

7. Measure treatment effectiveness 

A fifth utility of a biomarker is the ability to measure treatment 
effectiveness. Guidelines developed by the Endocrine Society recom-
mend diet, exercise, and behavior modification as the primary compo-
nents in the management of obesity, with pharmacotherapy and 
bariatric surgery suggested as an adjunct to amplify adherence to 
behavior change (Apovian et al., 2015). As described in the previous 
section, some evidence suggests that discounting rate at baseline may 
predict weight change following treatment. This section will first review 
studies indicating that discounting is modifiable among overweight/-
obese populations. Second, we will review eleven studies that examined 
Episodic Future Thinking, an intervention that aims to decrease TD, and 
its effects on TD and food-related behavior (e.g., fast food demand, food 
intake, food choice). Third, we will review three studies that examined 
interventions specifically targeting weight-loss that measured dis-
counting pre- and post-intervention, examining whether changes in TD 
parallel changes observed in other outcome measures. If discounting 

rates change in parallel with outcome measures indicating treatment 
effectiveness, discounting may also serve as a proxy for treatment effect. 
Much like biomarkers, a behavioral marker for treatment effect could be 
used to quickly identify novel interventions that are effective. 

7.1. Temporal discounting is modifiable in overweight/obese populations 

The degree with which individuals discount delayed rewards has 
both trait and state-like characteristics (Odum and Baumann, 2010). 
That is, evidence suggests TD is relatively stable over time and across 
situations (Odum, 2011a), but is also modifiable by framing, episodic 
future thinking, and narratives about various positive and negative 
environmental contexts (Athamneh et al., 2019; Bickel et al., 2017; 
Mellis et al., 2018b; Rung et al., 2019). Experimental data extends these 
findings to overweight/obese individuals (Lewittes and Israel, 1978; 
Snider et al., 2020; Stein et al., 2017), suggesting that interventions that 
target or modify TD may provide therapeutic benefit to this population. 
For example, in one study undergraduates interested in weight-loss 
showed reduced TD and sugar intake after exposure to scenes of natu-
ral versus urban environments (Kao et al., 2019). 

7.2. Modified by episodic future thinking interventions 

Episodic future thinking (EFT) is a narrative intervention derived 
from the science of prospection. Participants are asked to imagine and 
list realistic positive future events for various time periods (e.g., 1 
month, 6 months, 1 year) and then think about those future events 
during decision-making tasks. Integrating episodic future events during 
decision-making increases the value of delayed outcomes (Koffarnus 
et al., 2013) through increased activation in the executive system (Peters 
and Büchel, 2010). Thus, EFT is one strategy to help individuals make 
choices with long-term benefits. Eleven studies of obese/overweight 
individuals examined whether discounting rates changed in parallel 
with food-related behavior (e.g., food purchasing, food choice; caloric 
intake) following an EFT intervention. Five out of eleven studies 
demonstrated that discounting rates decreased in conjunction with 
positive changes in food-related behaviors (Athamneh et al., 2020; 
Daniel et al., 2013; Sze et al., 2017a, 2017b; Daniel et al., 2015; Dassen 
et al., 2016), while three studies observed improvements in food-related 
behaviors but no change in TD (Kakoschke et al., 2018; Chang et al., 
2020; Hollis-Hansen et al., 2020), two studies noted decreases in TD but 
no changes in food-related behaviors (Bickel et al., 2020; Stein et al., 
2020) and one study found no effect of EFT on discounting, caloric 
intake, or the relative reinforcing value of food (Mansouri et al., 2020). 
We discuss these in more detail below. 

In an online study, Sze et al. (2017a, 2017b) examined over-
weight/obese individuals to determine whether EFT reduced TD and 
hypothetical fast food purchases relative to two control conditions: 
Episodic Recent Thinking (ERT) and no episodic thinking (i.e., sitting 
quietly). ERT involves the same procedures as EFT, but participants are 
asked to list positive recent events rather than future events. Results 
indicated that EFT significantly reduced TD and demand for fast food 
while the control conditions had no effect. Furthermore, the positive 
effects of EFT persisted even when participants were challenged by 
negative income shock (i.e., abrupt transitions to poverty), which has 
previously been shown to increase TD. 

In a laboratory study, Stein et al. (2020) sought to extend the findings 
from Sze et al. (2017a, 2017b) to a more clinically advanced population 
of overweight/obese individuals with prediabetes (i.e., elevated HbA1c) 
using the same study design and tasks (i.e., EFT/ERT and negative in-
come shock/neutral conditions; hypothetical fast food purchase task; 
Adjusting TD task). Results indicated that while EFT decreased TD, 
unlike the prior study EFT did not significantly affect fast food demand. 
The authors identified several possible confounding demographic fac-
tors that might explain the discrepant results between the two studies 
including differences in age, BMI, and percent of female participants. 
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The authors also suggested that insulin resistance may blunt the effect of 
EFT due to its association with increased food reinforcement, thereby 
diminishing the utility of EFT in those with prediabetes/type II diabetes. 
Therefore, the authors note it may be necessary to increase the efficacy 
for more clinically advanced populations by increasing exposure to EFT 
over time and/or developing adaptations that increase the effect size for 
this difficult-to-treat population. 

Indeed, this conclusion was supported by an earlier laboratory study 
by Dassen et al. (2016) in a sample of female undergraduates that were 
not overweight or obese (mean BMI = 22.43; SD = 2.75). Participants 
were asked to refrain from eating for 2 h prior to the study and were 
provided snacks ad libitum while completing either food-related EFT, 
food-related episodic past thinking (EPT), non-food-related EFT, or 
non-food-related EPT. The snacks included chocolate chip cookies, a 
bowl of M&Ms, and a bowl of syrup waffles. Caloric intake was calcu-
lated by weighing the bowls before and after participants generated 
their episodic thinking cues. Participants then completed a TD task. Both 
food-related and non-food-related EFT reduced discounting compared to 
the EPT groups, however only the food-related EFT intervention reduced 
caloric intake. While change in TD was not related to caloric intake, the 
results suggested that EFT should be tailored to the behavior of interest. 

Of note, a more recent study (Chang et al., 2020) found an interac-
tion between BMI and EFT on ad libitum snacking among first-year 
psychology undergraduates (mean BMI = 22.65; SD = 4.36), such that 
EFT reduced unhealthy food intake (chocolate malt balls) in those with 
high BMI but had no effect on healthy eating (dry oatmeal cereal). The 
authors noted that discounting did not mediate the relationship between 
episodic thinking and BMI. 

In an attempt to replicate these results in an obese sample, Athamneh 
et al. (2020) examined the effects of health goals in combination with 
general EFT on TD and measures of fast food demand and craving in 
obese individuals. In a 2 × 2 factorial design, participants were 
randomly assigned to one of four conditions: EFT-health goal, 
EFT-general, ERT-health goal or ERT-general. Health goal EFT was not 
more effective than general EFT in reducing TD. However, the addition 
of a health goal to general EFT was significantly associated with a larger 
effect on intensity and elasticity of demand for fast food compared to 
EFT-general. These findings suggest that the amplification of future 
thinking through the inclusion of a health goal may promote healthy 
decisions and result in positive behavior changes. 

The above findings are consistent with two studies that included a 
measure of food consumption. Daniel et al. (Daniel et al., 2015, 2013) 
examined the effect of EFT on TD and energy intake in two parallel 
human laboratory studies with overweight/obese adult women (Daniel 
et al., 2013) and overweight/obese 9− 14 year old children (Daniel et al., 
2015), respectively. In a between-subjects design, participants attended 
a single two-hour session where they completed a TD task, generated 
EFT or ERT cues, repeated the TD task, and then completed an ad libitum 
eating task designed to trigger impulsive eating. Both studies demon-
strated that EFT reduced TD and caloric intake during the eating task. 
Interestingly, in both children and adults, EFT had the greatest effect on 
those individuals who reported the highest desire or drive for food re-
straint, suggesting that a pre-existing motivation to diet may be an 
important factor in reducing caloric intake and later weight gain. 
Furthermore, Daniel et al. (2015) included a comparison group of 
healthy weight adults and observed that EFT had a similar magnitude 
effect in both overweight/obese and healthy weight adults. 

In a study that measured behavior in both the laboratory and natural 
environment (Bickel et al., 2020), overweight/obese adults with 
pre-diabetes completed baseline measures of TD, a food purchase task, 
and ad libitum food intake procedures. At sessions 2 and 3, participants 
were prompted to engage in EFT or ERT while completing the same 
tasks. Further, between the completion of sessions 2 and 3, participants 
engaged in EFT or ERT at home and completed the TD task remotely. 
While EFT significantly decreased TD, it did not affect responses on the 
food purchase task or alter intake in the ad libitum procedure. 

Hollis-Hansen et al. (2020) further built on this body of literature by 
examining the effects of EFT on food purchasing in the natural envi-
ronment among overweight/obese mothers of children aged 2− 15 
years. At the baseline visit, participants completed an adjusting amount 
TD task, played mobile games, and were then randomized to generate 
cues for EFT or standardized past episodic thinking (SET; vividly 
re-imagining the experience of playing mobile games). Participants 
practiced their cues on their own on the evening of the baseline visit and 
during the next day before and during grocery shopping. On the third 
day, participants returned to the lab to complete the TD task and provide 
receipts and short descriptions of all their food purchases. Participants in 
the EFT group purchased fewer calories, fewer grams of fat, fewer grams 
of saturated fat and fewer milligrams of sodium than those in the SET 
group. Although not reaching statistical significance, discounting rates 
decreased in the EFT but remained stable in the SET group. Of note, 
participants were not instructed to think about their cues while 
completing the TD task, which is typically a primary component of EFT. 

Mansouri et al. (2020) compared the effects of a single EFT or ERT 
session relative to daily EFT/ERT on TD, caloric intake during an ad 
libitum buffet, and the relative reinforcing value of food in over-
weight/obese participants. In a mixed design, participants generated 
EFT or ERT cues and then completed a TD task while thinking about 
their cues. Participants were then asked to rate the taste and liking of 
foods in a buffet consisting of high-energy-dense foods (e.g., chocolate, 
cookies, potato chips) as well as low-energy-dense foods (e.g., grapes, 
canned peaches, yogurt). After the taste test, participants were asked to 
fill out additional questionnaires and were told to eat as much of the 
buffet as they desired. Participants then received thrice daily EFT cues 
for 1 week before returning to the lab to complete the tasks again. 
Relative to the ERT condition, there was no effect of single session or 
repeated EFT on TD, caloric intake, or the relative reinforcing values of 
foods. Of note, as baseline measures of these tasks were not completed, 
the study was only able to conclude that there was no difference in the 
effects of daily EFT relative to a single engagement of EFT. 

Finally, in a pilot study using a within- and between-subjects design, 
Kakoschke et al. (2018) compared approach-avoidance training (AAT), 
and EFT delivered daily for one week via smartphone to a control con-
dition among overweight/obese individuals. Food choice and TD were 
measured at baseline, after seven days of smartphone-delivered training, 
and at 6-week follow-up. Between-group comparisons indicated that 
AAT but not EFT significantly increased healthy food choice and 
modestly reduced weight (Mean difference = -0.74 lbs) from baseline to 
the six-week follow-up. Neither AAT nor EFT significantly altered TD. 
However, the authors noted several limitations that may explain the 
discordant results. First, this pilot study was not sufficiently powered to 
detect 3 × 2 or 3 × 3 interactions. Furthermore, the authors noted that 
the EFT procedures were different than those implemented previously. 
In prior laboratory studies, participants generated cues immediately 
before completing tasks (i.e., TD and food choice/demand) and were 
presented with and asked to think about the EFT cues while completing 
the tasks. In contrast, participants in Kakoschke et al. (2018) generated 
three EFT cues that were presented daily for seven days and the TD task 
was completed in a post-training session that was scheduled over 24 h 
after completion of the EFT training. Additionally, participants were not 
instructed to think about their event during the task, which is a primary 
component of EFT. Thus, the procedures may have diminished the effect 
of EFT on decision-making. The EFT cues also differed from prior lab-
oratory studies, such that participants generated three EFT events for a 
single time frame (i.e., the next four weeks). Prior laboratory studies 
have demonstrated that the efficacy of EFT in reducing TD depends on 
the number of events and future time frames in the task, with multiple 
events and time frames necessary to observe significant results (Lewittes 
and Israel, 1978; Snider et al., 2020; Stein et al., 2017). Thus, a number 
of differences in study design may account for these inconsistent results. 

Considered together, these studies provide mixed evidence for the 
effects of EFT decreasing TD in tandem with changes in food purchasing 
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and caloric intake. Of note, episodic future thinking interventions are 
designed to modify temporal discounting and eight out of eleven studies 
reviewed here indicated that this intervention improved food-related 
behaviors among overweight/obese individuals. Taken together, the 
data supports further investigation of EFT as an intervention for obesity, 
although more research is needed to determine how it can be effectively 
implemented outside of the laboratory. 

7.3. Modified by weight-loss interventions 

Three studies examined whether the discounting rates of over-
weight/obese individuals decreased in conjunction with weight 
following interventions that specifically targeted weight-loss (Kulen-
dran et al., 2017; Sofis et al., 2017; Takada et al., 2011). These studies 
examined changes in TD and weight after three different interventions 
including bariatric surgeries, a personalized nutrition/exercise coun-
seling program, and a physical activity intervention. Interestingly, the 
nutrition/exercise counseling and physical activity interventions 
demonstrated a parallel decrease in TD and weight, while surgical in-
terventions did not. 

Kulendran et al. (2017) aimed to examine whether changes in 
state-like measures of impulsivity predicted weight loss at 6-months 
after bariatric surgery. Obese participants, aged 20–69 years old, un-
derwent either a gastric bypass or a sleeve gastrectomy. TD and the Stop 
Signal Reaction Time Task (SSRT; adapted from Logan et al., 1997) were 
assessed at least one week before and six months after the surgical 
procedure. While all participants exhibited large decreases in BMI 
post-surgery, change in SSRT but not TD predicted change in BMI. 

Takada et al. (2011) examined the effects of a 16-week nutritio-
n/exercise advice program on TD and weight loss. Overweight/obese 
participants were randomized to either self-care or a more intensive and 
personalized remotely-administered care. The self-care group received 
an informational packet at baseline and a health exam at week 8 
including brief advice, while the telecare group received the same re-
sources plus biweekly remote counseling sessions with a registered nurse 
who created a personalized weight-loss program for each participant. 
Weight and a 2-question TD task were measured at baseline, 8-weeks, 
and 16-weeks (e.g., end of treatment). TD was also measured at a 
follow-up session 2 months post-treatment. The telecare group signifi-
cantly reduced weight from baseline to 16 weeks (mean = 4.6 pounds; 
SD = 2.9; p = 0.001) while the self-care group did not (mean = 1.3 
pounds; SD = 3.4; p = 0.42). Interestingly, decreases in TD from baseline 
to 24-weeks were greater in the self-care condition relative to the more 
intensive telecare. Given the large variability in weight loss observed in 
both conditions, the authors noted that only a subset of participants in 
each condition showed a significant decrease in TD. When these par-
ticipants were pooled and compared with participants who exhibited no 
change in TD, only those participants with a significant decrease in TD 
exhibited significant weight loss. 

Finally, Sofis et al. (2017) examined an individually effort-paced 
physical activity intervention where 12 overweight/obese women met 
with a fitness coach for 45 min of workout three times per week. Par-
ticipants first completed a one to two week baseline phase where TD and 
self-reported minutes of moderate to vigorous physical activity were 
measured repeatedly until stability in the measures was achieved. In the 
treatment sessions, participants met with a fitness coach and were 
instructed to briskly walk laps, alternating between lower effort and 
higher effort laps (e.g., similar to interval training). After completing the 
seven-week treatment, participants were instructed to maintain their 
workouts on their own for one month. Participants’ pace (min/mile; 
calculated by number of 0.17 mile laps completed in each 30 min ses-
sion) was measured at each treatment session and the one-month fol-
low-up session. TD was also measured three times per week during 
treatment and again at the one-month follow-up. Results demonstrated 
that the physical activity intervention significantly increased pace and 
self-reported daily minutes of moderate activity, and significantly 

reduced TD. Relative to baseline, TD was reduced by an average of 17.6 
% during treatment and 19.9 % during maintenance. Decreases in TD 
were also significantly associated (r = .71, p = .012) with increases in 
pace (from baseline to the last workout session (range = 0− 3 minute 
improvement), suggesting that TD may be a good proxy for treatment 
effect. Furthermore, the positive effects of the intervention remained 
significant at one-month follow-up, suggesting that changes in physical 
activity and TD were maintained for some time following the 
intervention. 

The limited number of studies in this section precludes any definitive 
conclusions. However, the available data suggests that TD changes in 
response to effective behavioral interventions for overweight/obesity. 
While two of the three studies reported this result, there were important 
methodological differences across the studies. First, the primary inter-
vention differed across the studies. Kulendran et al. (2017) investigated 
biological/surgical interventions while the other two studies investi-
gated behavioral interventions. Although bariatric procedures typically 
include adjunct behavioral interventions, the primary cause of 
weight-loss is not behavior change. These results support TD as a pu-
tative behavioral marker for obesity, since TD changed in response to 
behavioral interventions but not biological/surgical interventions. 
Indeed, Sofis et al. (2017) noted that changes in TD were significantly 
correlated with sessions attended, such that the more sessions the par-
ticipants attended, the greater the reduction in TD. Of note, national 
guidelines recommend that weight-loss interventions are maintained 
over a period of at least 6-months with 1–2 lbs lost per week (American 
College of Cardiology/American Heart Association Task Force on Prac-
tice Guidelines, Obesity Expert Panel, 2013, 2014). As none of the 
studies maintained the intervention for the recommended length of 
time, it is possible that longer interventions would have a greater impact 
on TD and weight loss. The studies also differed in outcome measures 
and length of follow-up. Sofis et al. (2017) was the only study that 
measured behavior change (i.e., increase in physical fitness) in addition 
to weight loss. Further, Sofis et al. (2017) and Takada et al. (2011) 
observed that changes in TD were maintained at one and two months 
post-treatment, respectively. Kulendran et al. (2017) included a 
6-month follow-up post-surgery but did not observe any changes in TD. 
As long-term weight loss outcomes are highly dependent on maintained 
behavior change, future research may want to include a longer-term 
follow-up to determine whether TD is a marker for maintained 
weight-loss following treatment. 

8. Conclusion 

The current review investigated available evidence across a broad 
range of domains of obesity related research to determine if it supports 
the characterization of TD as a candidate behavioral marker for obesity. 
The majority of domains examined (9/12) were generally in support of 
TD as a behavioral marker for obesity. Of the remaining three domains, 
two reported mixed results and one reported negative results. We 
describe these domains and their findings in more detail below. 

In terms of functioning as a biomarker: TD was able (in most studies) 
to identify those at risk for obesity development, determine obesity 
diagnosis, classify obesity progression, predict treatment prognosis/ 
outcomes, and measure treatment effectiveness. Unfortunately, longi-
tudinal research of discounting and obesity is lacking, limiting the 
ability to draw conclusions and supporting the importance of conducting 
this type of research in the future. 

In regards to obesity development, studies among children indicated 
that the ability to delay gratifications is associated with weight gain and 
obesity onset years later. In addition, heighted TD is associated with lack 
of interest in, purchasing of, and adherence to healthy diets as well as 
increased craving and consumption for foods, especially those high in fat 
and sugar. Heightened TD is also associated with lower levels of physical 
activity and impaired sleep behaviors. Further interventional studies are 
needed to investigate whether changes in eating or exercise behaviors 
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can alter TD rates. 
In the context of functioning as a biomarker for disease diagnosis, the 

large extant literature supports TD as a robust behavioral marker for 
obesity, with a majority of case-control studies and continuous studies 
showing a positive relationship between TD and obesity. Additionally, of 
the studies that suggested no significant relationship between TD and 
obesity, the majority presented with methodological considerations that 
may limit the generalizability of findings. In regards to measuring dis-
ease severity (i.e., a positive association between TD and BMI), only a 
few studies have been conducted with all suggesting no relationship 
between TD and BMI in those already obese. The small number of studies 
conducted in combination with methodological limitations (e.g., women 
only samples and restricted age ranges) inhibits the generalizability of 
these findings. More definitive conclusions await further investigation. 

Studies investigating the biological components of obesity and TD 
indicated that activation of executive function areas, such as the PFC, 
are related to obesity, weight gain, and TD. Changes in the activation of 
the executive and/or impulsive systems among the obese was signifi-
cantly associated with changes in rates of TD. Moreover, published data 
report a significant association between TD and neurochemical dysre-
gulation, especially dopaminergic neurotransmission. Additional 
research examining the associations between TD, genetic traits, and 
dysregulation among other neuromodulators related to eating and ex-
ercise modulation in obese individuals is needed to enhance our un-
derstanding of the biological substrates of TD and obesity. 

Research studies examining TD’s ability to classify risk for obesity 
progression and/or comorbidity complications are limited. Few studies 
with different methods examine the ability of TD or delay of gratifica-
tion to predict weight change over time observing mixed findings. 
Overall, obesity related comorbidities are associated with greater rates 
of TD than obesity alone. Further longitudinal research and research 
investigating other comorbidities related to obesity and different se-
verities of comorbidities would help to further elucidate TD’s ability to 
predict the progression of obesity. 

Mixed evidence was found regarding whether TD may serve as a 
proxy for obesity treatment outcomes; some evidence suggests that 
baseline TD predicted treatment outcomes. However, due to the limited 
number of studies, the relationship between baseline TD and weight loss 
in treatment settings needs more exploration. 

Lastly, TD may be modified during treatment, which could obscure 
the predictive validity of baseline TD. Indeed, the evidence suggests that 
discounting and food-related behaviors can be modified by Episodic 
Future Thinking in overweight/obese individuals. Behavioral weight- 
loss interventions also provided some evidence of concurrent de-
creases in TD and weight during treatment. However, the limited 
number of studies examining discounting’s ability to function as a 
determinant of treatment outcomes highlights the importance of addi-
tional research in this area. 

In conclusion, this review examined the candidacy of TD as a 
behavioral marker for obesity across 153 published studies. Given the 
positive relationship for TD in 9 out of 12 domains examined, further 
consideration for TD as a behavioral marker of obesity is warranted. 
Several domains possess a small number of studies and more research in 
these areas will help to provide more definitive conclusions. While 
obesity is clinically diagnosed using BMI, this simple conceptual 
framework may not fully capture the range of maladaptive behaviors (e. 
g. eating patterns) that contribute to obesity. Future research may 
benefit from including measurements of these constructs (i.e., binge 
eating behaviors). If future research supports the classification of TD as a 
candidate behavioral marker for obesity, TD could be useful to identify 
and target individuals at greater risk of developing obesity, predict 
treatment outcomes, reveal facets of the disorder’s mechanism, and 
suggest novel targets for treatment development. 
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